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FOREWORD

This report is submitted in partial fulfillment of the
final report, CDRL item A003, for the DAIS Mission Software,
F33615-75-C-1181. 1Intermetrics would like to express its
pPleasure in participating in the DAIS effort. This cooper-
ative and evolving effort combined many industrial and govern-
mental participants. It has illustrated the ability of the
Air Force to respond in a timely fashion to the dynamic en-
vironment of modern technology. AFAL is to be congratulated
* in their successful development and management of this pro-
gram,
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SECTION I.
INTRODUCTION AND SUMMARY

The Air Force Digital Avionic Information System (DAIS)
Program had as its object the design, development and speci-
fication of a standardized, modular, reliable digital avionics
system with easy maintainability and low life cycle costs.
The modularity concepts included both hardware modularity,
i.e., variable numbers of processors and subsystems, and
software modularity, i.e., mission dependent packages com-
posed of software building blocks. Central to the achieve-
ment of these architectural characteristics was the develop-
ment of an applications independent executive function which
could efficiently integrate the diverse hardware requirements
and applications software into a cohesive, efficient unit.
The executive software and the modular applications software
are collectively known as the DAIS Mission Software and are

the subject of this report.

As in any program of significant magnitude, the DAIS
program had the benefit of many elements and individuals
within the aerospace community. A few of the more signifi-
cant participants in the DAIS program and their contributions
to the efforts are given in Table 1, It should be noted
that the DAIS program has evolved during its active history
from 1973 to the present. It will undoubtedly continue its
evolutionary growth, lending significant contributions to

future avionics system concepts and designs.

The remaining sections of this report discuss some of
the more significant details of the DAIS Mission Software.
A general guide to the report is as follows:




Section 2.0 BACKGROUND - A general overview of the ante-
cedent software problems associated with avionics systems
and a brief description of the DAIS system hardware and soft-

ware environment,

Section 3.0 DESIGN OBJECTIVES AND METHDOLOGY - A discussion
of the attendant framework of avionics system software

development problems and the design solutions that evolved.

Section 4.0 TECHNICAL DESIGN - A description of the details
of the technical design of the executive and application

software and their interaction.

Section 5.0 DEVELOPING A MISSION - A brief overview of the

production environment used to develop DAIS Mission Software.

Section 6.7 MISSION SOFTWARE ILLUSTRATIONS - An account of
the evolut .onary growth of the DAIS Mission Software and

examples o7 the attributes of the software design.
Section 7.) CONCLUSIONS AND RECOMMENDATIONS

The DAIS Mission Software was programmed using the Higher
Order Language (HOL) JOVIAL J73/1 in conjunction with modern
structured software techniques and relocatability concepts
derived from Higher Order Software (HOS) principles. The
results of this effort have been the successful develcpment
and demonstration of the application software for two close
air support missions: one based on an A-7 aircraft and the
other on an A-10 aircraft. As part of this effort a real-
time interface between the applications software and the
executive software was specified. The resultant executive
software has been successfully used on the Single Seat
Attack program and forms the baseline for an Air Force

standardized Executive.
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The success of the Mission Software effort shows the

applicability of both modern software techniques and inte-
grated design to digital avionics system applications.

Table 1. Program Contributors

Organization

AFAL

Charles Stark Draper
Laboratory

Computer Sciences
Corporation

General Dynamics
Hughes Aircraft Company

International Business
Machines

Intermetrics Incorporated

Texas Instruments

The Boeing Company

TRW

Westinghouse

Contribution

Program Management
Design Consultants

JOVIAL J73/I Compilers
Preliminary Design Study
Controls and Displays

Multiplex Egquipment
Mission Software

Preliminary Design Study,
and Initial Hardware and
Software Specifications

Initial Hardware and
Software Specifications

System Integration and
Test Coordination

DAIS Processors: AN/AYK-15
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SECTION II.
BACKGROUND

The Air Force has been increasingly concerned with the
rising costs of developing and maintaining weapon systems.
A significant contributor to this rise in cost is the con-
tinuing development of unique and singular systems and soft-
ware designs for each specific application. 1In countering
this trend, the Air Force has applied both technical and
managerial techniques to stop the need for this proliferation.

The problem stems from the fact that the role of digital
computers in new weapon systems continues to expand. Even
today weapon systems of similar processing requirements
possess widely differing computer system designs, differing
software tools and philosophy, and correspondingly different
support tcols and requirements.

One of the rmore important programs directed toward a
solution to this problem is the Digital Avionics Information
System (DAIS). The DAIS program has been an ongoing effort
at the Air Force Avionics Laboratory (AFAL) since 1973 to
develop tools and techniques for producing reliable, effec-
tive systems with more desirable attributes than previously
available. It has developed from a conceptual phase through
a design rhase to an actual implementation of a system with-
out the high life cycle costs of previous designs. The
current implementation is scheduled to be refined and then
to be transitioned to the production environment of the

Aeronautical Systems Division (ASD).

The Air Force DAIS Program has been concerned with long
term life cycle cost issues for avionics, and has addressed
them within the context of currently available technology.
DAIS has systematically integrated and applied modern tech-
nology anc¢ techniques to the aviconics problem. Significant
among the technologies incorporated in DAIS are the use of

4




the MIL-STD-1553A multiplexed data bus, a generalized feder-
ated computer system architecture for reliability and for
computational growth, the use of general purpose programmable
pilot displays, and the specification of modern software
engineering practices.

The DAIS program has successfully incorporated such
technologies and has demonstrated their applicability to
military avionics systems., The DAIS software has been imple-
mented in the HOL Jovial J73/1I and structured according to
design standards devised for reliability, maintainability and
low life cycle costs. An important part of this development
has been the implementation of a DAIS Executive System which
minimizes the need for applications programmers to be con-
cerned with the details of multi-processing and I/0 hardware
operation.

2.1 Avionics Software

In the long term, the software cost of an avionics system
is dominated by the modification of, additions to, and main-
tenance of the mission oriented application software, i.e.,
the Operational Flight Program (OFP). Originally, digital
avionics processors were programmed in assembly language.

The resulting code was usually hand crafted to obtain the
desired performance characteristics. Modification of such
OFPs was difficult and costly and the addition of any new
feature often required both a major redesign and a compromise
to current features. Consequently, modern avionics systems
such as the Air Force B-1 and F-16 programs specified the use
of the Higher Order Language (HOL) J3B for their avionic
systems. Similarly, NASA selected the higher order language
HAL/S for programming the Space Shuttle. The use of a HOL
narrows the range of possible programming errors, and greatly
improves the comprehensibility and maintainability of the
resultant OFP, Additionally the use of a HOL frees the OFP
programmer from the specific characteristics of a given

)




target machine, making feasible initial code and development
and module testing on a general purpose computer. This
technique has the advantages of easier facility accessibi-
lity, earlier development, and the availability of more
extensive diagnostic tools for software development than

is usually (if at all) available with typical target military
computers.

One of the major achievements of the DAIS Mission Software
development effort has been the design, specification and
Eevelopment of a standard avionics executive. The advantages
of standardization include the reduction of development errors
due to wider applicability (and thus legacy), a reduction in
training and documentation costs and portability. The DAIS
executive has greater than usual flexibility for avionics
applicacions because it accomodates certain real-time func-
tional characteristics which are a common requiiement, regard-
less of the particular missicn or aircraft. These real-time
characteristics typically are required to compute navigation,
auidance, and weapon delivery information; to read and control

sensors and actuators; to communicate with the pilot via cock-

pit controls and displays; and to control both the periodic and

asynchronous execution of these functions. These functional
characteristics include real-time process interaction: initi-
ation of processes, repetitively, upon the occurence of some
event or at sore specific time; the conditional execution of
processes; the ability to monitor the real-time process itself;
and communication with the actual I1/0 devices. It is this set
of real-time capabilities that the DAIS executive has success-
fully incorporated. A further refinement has been the imple-
mentation of these real-time executive services via the

JOVIAL DEFINE capability in a manner which appears to the

programmcr as a language augmentation.
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The DAIS executive ancd its interface to the application
software has been designed to afford both straightforward
design and reliable modification of the application software.
This has in part been accomplished by raising the level of
the user's interface to the applications software. It makes
the application software invariant with respect to the
computer, the computer network, the I/O implementation, and
the implementation of the executive itself. This has been
done by creating a "logical" interface between the executive
and the application software: the process and 1/0 control
has been represented by a well defined standard set of lan-
guage primitives. It has therefore become possible to develop
and maintain OFP software in a logical, application oriented
fashion, without the heretofore degenerating effect of system
dependencies. It has become feasible to achieve a common
standard across the total active fleet and to obtain benefits
with respect to personnel qualifications, training, documen-
tation, software support cost, and the sharing of expertise.

Careful attention has been paid to the structuring and
design of the application software in DAIS. Much of the
current interest in structured programming and other software
engineering techniques does not concern itself with real time
software, and most improved programming techniques are not
applicable to real time problems. Real time software has
severe performance and time constraints. It has introduced a
new dimension called "time". The DAIS Mission Software base-
line design was an outgrowth of research into Higher Order
Software (HOS). HOS was concerned with the application of
modern software design and structuring techniques to real-
time software. The adaptation of abstract HOS concepts to
actual software practice was initially undertaken for DAIS
by the Charles S. Draper Laboratory. It was developed and
applied by Intermetrics to the design of the Mission Software.
This mapping of HOS concepts into software reality resulted
in the preliminary design for the DAIS Executive.




-xe

2.2 DAIS Baseline

While DAIS has addressed avionics software development in
general, it necessarily consists of a specific set of elements
in its current implementation. The current system employs a
particular set of hardware, oriented to a specific aircraft
and mission, having a specific set of avionics equipment,
and is provided with specific software support elements.

2.2.1 DAIS Hardware

The elements of the DAIS hardware configuration which are
relevant to the Mission Software are the processors, the data
bus, the controls and displays systems, and the various inter-

facing equipment.

DAIS contains one or more AN/AYK-15 processors organized as
a federated system. One, two, and three processor systems
have been tested and demonstrated. Each processor within the
system possesses its own dedicated memory and executes a set
of prepartitioned software modules. Software processes in
different computers cormmunicate over a common data bus inter-

connectinc all of the processors and all other system elements.

DAIS incorporates a dually redundant data bus bascd on
MIL-STD-1553A. DAIS has developed a detailed bus protocol
for its baseline implementation, although there is provision
for other (non-DAIS) protocols.

DAIS also incorporates a set of general and multi-purpose
programmable displays, which have undergone evolutionary changes
during the program. The current display system consists of
five CRT displays, switchable refresh memories, programmable
symbol generators, scan converters, and some cdedicated instru-
ment displays. The particular set of Control and Display equip-
ment is not critical to either the functioning or design of the

DATIS Mission Software.
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2.2.2 The Basis for the DAIS Application

The present DAIS application called, Mission Alpha (a) has
been modeled after the A-10 aircraft. While the current A-10
fleet aircraft has not been assigned a digital avionics system,
DAIS has specified sets of equipments consistent with the
Close Air Support Missions of the A-10. The original DAIS
Mission Software Application, called Mission A, was based upon
the A-7D but was later modified to its current A-10 configuration.

2.2.3 Software Test Stand (STS) and Integrated Test Bed (ITB)

The DAIS STS and ITB are combined hardware/software faci-
lities, consisting of both real and simulated equipments. The
ITB is the larger system and contains:

e actual DAIS AN/AYK-15 processors

e actual data bus system including Bus Control
Interface Units (BCIU) and Remote Terminals

e actual control and display equipment

® & cockpit simulator driven from the DAIS Hot
Bench which consists of a DECsystem-10 and a
number of PDP-1lls used to simulate the environ-
ment, the aircraft, and various equipments

e other elements of hardware and software
required to simulate, buffer, record and
control the ITB system.

2.2.4 DAIS Software Elements

The primary software support tool developed by DAIS has
been the JOVIAL J73/1 compiler hosted on the DECsystem-10
and targeted for the DECsystem-10 and the AN/AYK-15. The
AN/AYK-15 is supported by the DAIS ALAP assembler, DAIS
LINKS linker, and DAIS ASYTRAN loader.

BRI N
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SECTION III.
DESIGN OBJECTIVES AND METHODOLOGY

The design objectives and methodology used to develop
the DAIS Mission Software were based on several different
concepts and techniques. Besides the use of the modern con-
cepts and techniques of structural programming and top-down
design, DAIS based its design principles upon additional
concepts espoused by the Higher Order Software (HOS) study.
Another aspect of the methods used involves the applicability
of HOS concepts to the JOVIAL J73/I language used by DAIS.
This mapping of abstract concepts into practice entailed
both specific development and modifications in detail of the
basic HOS principles. A third aspect of the DAIS design
objectives and methods was with respect to an efficient and
optimized software package oriented specifically to the
avionics environment in contra-distinction to a ground based
computer network. Finally, an extremely important aspect
of the DAIS design was the development of a set of software
standards to both communicate the design and control the
specific implementation. The human comprehension aspect of
a large software project can be never be neglected; proper
design and implementation cannot be accomplished if all the
individuals working on the project are not properly disci-

plined in a unified design approach.

3.1 Software Structure

One of the objectives of DAIS was to use the latest
software technology applied in a systematic and integrated
fashion in order to demonstrate its applicability to the
development of avionics systems. The DAIS Mission Software
bascline was established upon the research work performed
in Higher Order Software (HOS). This research was

10




concerned with the application of modern software design and
structuring techniques to real-time software. Software
engineering techniques do not usually address real-time
software problems and are not always applicable to real-
time problems. Real-time software has severe performance
and time constraints and introduces the new dimension

called time.

i The application of abstract HOS concepts to actual

} software practice was initially undertaken for DAIS by the
Charles S. Draper Laboratory. This mapping of HOS concepts
into practice formed the preliminary design for the DAIS
Executive. Conceptually, HOS principles try to remove real-
time problems as found in avionics software by enforcing
structured software standards on this set of problems.

The DAIS Mission Software design process can be viewed
as a three step process. The first step was the functional
breakdown of the mission requirements in a systematic top-

down fashion. This initial step provides a functional decom-
position of the mission requirements into smaller, logically
complete and more detailed functional specifications.

The second step was to structurally reorganize these
functional specifications in a manner which would expose
real-time software problems and thus allow their solution.

3 The methodology was based upon the theoretical work collec-
tively known as Higher Order Software. These rules require

a correlation of real-time criticality with priority struc-
ture and the creation of sequential modules in order to
structure response requirements. The benefits gained through

this discipline are:

e The removal of certain real-time problems by
means of structural definition (e.g., data
protection).

11
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® The comprehension of potential dynamic inter-
actions in a static fashion (e.g., through

planar tree graphs of the priority structure).

e The necessary hierarchy of the various functions

and their interactions (e.g., it exposes abso-~
lute priority, shared data, required re-entrancy).

e Potentially, the deduction by static means of o
various worst case situations (e.g., maximum

execution time).

The third step was to provide the Specification Design,
i.e., the detailed deisgn. It was extremely important to
differentiate between the Requirements and Specification
Design steps. Requirements Design was concerned with func-
tional operation, software structure, definition of control
and calculation modules, and identification of data inter-~

faces and error conditions. Specification design addresses

+he implementation, taking into account the programming
language, e.g., JOVIAL J73/I, the details of the executive,
the avionics system configuration and the demands of effici-
ency. Here efficiency must be viewed within the context of
the total software development: execution time, memory
space, growth potential, maintainability and documentation

readability.

To the greatest degree possible, the DAIS Mission Soft-
ware was crganized in a hierarchical control tree structure.
All applications software consisted of either Controller or
Calculator functions. Every Calculator must be controlled
by a unique Controller. (Common service routines are excepted
in that they may be invoked from many program modules.) As
a requirerents design principle, control over modules conform
to this perticular hierarchy. A module, therefore, can only
invoke mocdules on its next lower level, not on the sama level,
and cannot invoke itself. Each mode (marked N in Figure -1)

represents a Controller with a seguence, or choice, of functions

12




Figure 1. Hierarchical Control Structure
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it controls. Each Calculator module (marked C) represents

a data maripulation function providing for no further control.

The control hierarchy implies a descending process pri-
ority in the sense that the local executive will preempt
lower priority processes in favor of pending processes of

higher priority.

In order to reduce the number of possible logic paths
and thereby facilitate the checkout and verifications of
DAIS Mission Software, all modules (Controller and Calcula-
tor) were designed to be single purpose. That is, extran-
eous functions were not performed if the by-products were
not intended as an output. In addition, multi-mode modules
were avoiced, i.e., those which change their function sig-
nificantly based on the internal examination of flags. This
was tempered with due consideration for speed and size effe-

cilencies.

In order to increase the degree of determinism of the
hybrid (synchronous/asynchronous) real-time system which
included data protection and restartability, a strict set
of requirements design rules for order control was required

as follows:

® A Controller establishes the priority, timing and
sequence, and conditions for the execution of the
processes on the next lower hierarchical level
ard only that level. This ordering is established

by requests to the executive function.

e The priority of a Controller is higher than the
priority of any process on its most immediate
lower level. Higher priority processes may be

activated by a signal from a lower priority process.

e I‘ two processes have the same Controller and the
first has a lower priority than the second, then
a.:l processes in the control structure of the first

are of lower priority than the processes in the

14
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control structure of the second. A process that
may be preempted by another process, may be
preempted by any of the other process' sub-pro-

cesses.

e Processes are activated when a set of event condi-
tions are satisfied. The set of event conditions
is selected by the controller of the process, but
the events tested in the condition may be signalled
ON or OFF by any process., This relieves the Con-
troller of the need to monitor for the condition
and activate the process at the proper time.

e All data interfaces between processes are communi-
cated through Compools by the executive system.
This is accomplished by effective “READ/WRITE"
requests. Executive system intervention is
required to insure data integrity across all DAIS
processors. From a program point of view I/0
data will be similarly treated and accessed
within the Compools by the READ/WRITE requests.

While these principles appear to be abstract, in the
DAIS context they were mapped into a finite set of basic
building blocks. These are four building blocks for the
DAIS Mission Software from the application software point

of view. They are:

e Compool Blocks
e Tasks

e Comsubs

® Events

Compool Blocks represent global data and are centrally
defined and controlled for a given project. Tasks are the
real-time processes within the system. Tasks pass informa-
tion solely via Compool Blocks and must follow the DAIS HOS
structuring rules. Comsubs are commonly used subroutines.

15
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These subroutines perform calculations only and have no
real-time control or interaction. Comsubs receive and send
information solely via parameter passage and have no access
to Compool Blocks. Due to the multiprocess nature of a
real-time system, there is the implied requirement for re-

entrancy with Comsubs. Events are binary valued control

information that enable tasks and provide the environment
for tasks to interact. Within the DAIS system, Events may
e ~onsidered to be either "latched", i.e., ON or QFF, or

"unlatcheg", i.e., a-pulse, either plus or minus.

Using these building blocks, the HOS derived DAIS base-
line primarily effects the structuring and interrelationships
of Tasks. The major structuring reguirements are summarized
in Table 2.

The DAIS Executive has taken some variance with respect
to this sct of structuring rules. Wwhile the software was
developed within these objectives, some other features have
been added to allow an escape from this rigid structure.
This need arises either because of real-time criticality or

efficiency considerations. These modifications allow for:
! e The specification of an absolute priority
e The ability to wait on time or an event

N e Tre ability to update a Compool Block

2 within a single Task.

3.2 Avionics Executive Implementation Considerations

Avionics software differs from most ground based soft-
ware in ways that can impact design and implementation deci-
sions. This includes the possibility for optimization
hecause of a well-defined set of mission software, the con-
cern with real-time data conflicts, and the real-time cri-

ticalicy of the system.

16
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BASIC STRUCTURED
DAIS BaseLINE

TASKS ORDERED BY PRIORIT

PLANAR TREES OF PRIORITY

¢ ROOT OF TREE HAS HIGH
OFFSPRING OF A CONTRO

A’ AND B’ OF A AND B,

CONTROL OF A MODULE IS S
CATION ON ITS CONTROLLER

¢ EVENTS AND/OR TIME MA

e JATA STRUCTURE,

; ' eDATA INTO AND OUT OF
CONTROLLER.,

MODULE CONSTRUCTION,

e ONE FUNCTION,

DESIGN STANDARDS
¢ HOS Derivep

Y,

THAT CAN BE LINEARIZED.

EST PRIORITY, AND THE
LLER ARE STRICTLY ORDERED:

iF PRIO(A) > PRIO(B) THEN FOR ALL DESCENDENTS

PRIOCAY) > PRIO(R'),

OLELY DEPENDENT BY SPECIFI-

Y CAUSE A MODULE TO EXECUTE

A MODULE 1S KNOWN BY ITS

® NO KNOWLEDGE OF CONTROLLER.

g g L
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3.2.1 Well Defined Set of Mission Software

In the case of the avionics software, the total set
of software is known pre-run time, thus allowing for various
static instead of dynamic implementations. For example,
data structure organizations can include indices versus
pointers since indices are in general more efficient both
in space and execution time. The number of run-time para-
meters for executive routines can also be minimized if the
information is built directly into the executive tables.
In addition, it becomes possible to analyze possible and
allowable task and data interactions.

One of the major concerns DAIS had was with respect to
data efficiency. DAIS takes full advantage of static data
optimization possibilities by providing a pre-run time
executive table generator and analyzer. This tool
Partitioning Analysis, and LinkEdit FACility (PALEFAC), is
an integral part of the DAIS Executive systems and allows

for cptimized executive data information.

3.2.2 Real Time Data Conflicts

Data conflicts can occur in real-time systems due to
several different circumstances. Multiple updates of infor-
mation cauvsed by such events as Direct Memory Access of I/0
can lead to non-homogeneous data. Accessing arrays of data
presents a problem with respect to assuring data concurrence
since an array can be partially modified while it is being

accessed.

These data conflicts can be solved in various fashicns
including explicit task and I/0 design and layout; by
explicit use of Update Blocks, e.c., HAL/S; by implicit
I/0 - date interlocks; by the implicit use of double buf-
fering in tasks or some combination of the above. Ideally,

an implicit solution would be desirable in order to

18
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eliminate the problem so that from the application programmer's
point of view, it cculd not occur. This is indeed the desire
and design philosophy championed by HOS. Within the DAIS
system a double buffering method was implemented but with

more efficient alternate methods allowable in certain cases.

3.2.3 Real Time Criticality

Avionics executives must be concerned with both the
time accuracy of the I/0 interface signals and CPU satura-
tion. In a weapons system, for example, the accuracy of
an unguided weapon is dependent upon an accurate time of
release. Additionally, it is not an acceptable practice to
allow an avionics executive to stop; the system must continue.
One major area of real-time design criticality for the DAIS
Mission Software was the integrated development of restart
and reconfiguration capabilities as part of the overall soft-
ware package. In addition, CPU throughput considerations
cause revisions to the HOS principles to bring them into
conformance with the practicalities of actual system imple-

mentations.

3.3 Use of JOVIAL J73/1

The programming language selected for the DAIS Mission
Software was JOVIAL J73/I. The use of J73/1 combined with
the design methodology espoused by DAIS required both control
of and modification to J73/1 constructs and the addition of
several other features not available with J73/I. The use
and appearance of JOVIAL for the DAIS Mission Software was

modified in sever.:l respects.

e The use of some JOVIAL language features were
restricted, prohibited, or modified with respect

to certain of its constructs.

e Addition:1 "built-in functions"” were provided to
the DAIS Mission Software programmer.

19
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® A Real-Time interface was provided that augments
the language available to the Mission Software

programmer.

In addition, various commonly used procedures were made
available for programming the DAIS Mission Software.

3.3.1 JOVIAL Control Statement Restrictions

An example of types of restrictions imposed by DAIS
can be found with the J73/I control statements. Control
statements are executable statements that alter the normal
flow of a program or subprogram. Normally, a program begins
with the execution of the first executable statement in the
program. When the execution of that statement is completed,
the next sequential executable statement is executed. This
process continues until the program ends. A subroutine,
when referenced, starts with its first executable statement,

then execuvtes the next sequential executable statement, and

so on, until it returns control to the program statement
that referenced it. Control statements alter this seguen-
tial flow.

f In structured programming, emphasis is placed upon the
visible and orderly transfer and return of control. JOVIAL
N contains some control statements that work against the intent

of this structured-programming philosophy. Therefore, the

-

use of some control statements is either prohibited, restric-
ted, or actively discouraged by good structured-programming
practice. Table 3 lists the JOVIAL J73/I contrel state-
ments and their status with respect to DAIS Mission Software

usage.
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Table 3% JOVIAL J73/I Control Statements

ggx;‘il GOTO, STOP, RETURN, IF, SWITCH,
Usage . WHILE, FOR, Procedure Call
Forbidden Usage STOP
Discouraged Usage GOTO
Restricted or
Modified Usage SWITCH, FOR, Procedure Call
Standard Usage RETURN, IF, WHILE

3.3.2 Built-In Functions

The J73/1 language does not define a standard algorithm
or function package as part of the language specifications.
It is obvious that such functions as SIN (sine) and COS
(cosine) are required for avionics programming. DAIS
developed and specified a set of such functions and these
are delineated in Table 4. There was one other major
design requirement with respect to these functions. The
mission software environment is that of a multiprocess and
multiprocessors. It is therefore necessary to make these
arithmetic functions appear to be reentrant. Reentrancy
is not directly supported in J73/I, but rather the language
has the concept of "based" procedures. This in turn requires
the appearance of a break point in a routine invocation.
This provision for the built-in functions was done in such a
fashion as to provide the user with function calls of the
forms:

SIN @PTR (THETA) or
SIN (PTR, THETA).

21
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The underlying design principle was to present to the appli-
cation programmer the interface to which he is familiar and

which he desires.

Table 4. DAIS

Functions and Definitions

Function

Definition

ACOS (argument)
ASIN (argument)
ATAN (argument)
ATAN2 (argl,arg?)
C0S (argunent)
COSH (argument)
EXI" (argument)
LN (argument)
LOCG (argument)
MAY (argl,arg2)
SIN (argument)
SINH (argument)
SQRT (argument)
TAN (argument)
TANH (argument)

— . —— . — A ——— - — —— —— — — — ——
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Arc cosine

Arc sine

Arc tangent

Arc tangent of argl/arg2
Cosine

Hyperbolic cosine
Exponential function
Natural logarithm
Logarithm to the base 10
Maxi{imum of argl and arg2
Sine

Hyperbolic sine

Square root

Tangent

Hyperbolic tangent

—— ey S A e . S A S —— A — e = v —

3.3.3 Real-Time Interface

The CAIS methodology contains both solutions to the |

real-time data update problems and also provides for a

clean methodology of software restarts. The structuring

is predicated on the fact that references to global data be

in actuality references to a local copy of the global data.

In certain circumstances, where Tasks are of short duration

and of highest priority, reference to the actual "global
copy” of the data is allowed. Table 5 describes the DALS

real-time executive constructs which provide the task real-

time interfaces.
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Table 5
DAIS EXECUTIVE REAL TIME CONSTRUCTS

PROCESS CONTROL STATEMENTS
oscuuouns(;;ask name>, PRIORITY=<prio

.
i

<un1atched>}{flatched>}{<tl-‘ ticld)})
u u ]

<prio>: :=<integer>|-<integer>

<unlatched>::s,UPON<event expression>

<latched>: :=, IF<event expression>

<time field>::=,PHASE=integer, PERIOD=integer

<event expression>: :-<facwt>l<tlctoz>um<cvent expression>
<factor>::=[<factor2>] [<factor2>

<factor2>:;=<or_set>=ON|<or set>=OFF |<or set>
<or_set>::=<event>|<event>OR<or set>

o CANCBL (<task name>);
® TERMINATE (<task name>);

® WAIT'UNTIL (<time>);
’ >
® WAIT' FOR (<time>); ® GLOBAL'COPY (<data block 1SLYpPe>);

<type>::=READ|WRITE|UPDATE | TRIGGER
® COMSUB (<comsub name>);

DATA DECLARATIONS

® TASK (<task name>);

® EVENT (<event nama>);

® LOCAL'COPY (<data block>,<type>);

® WAIT (<event>,<state®);

<time> :: = number MINOR'CYCLES|number SECONDS
<state>:: = ON|OFF|+ PULSE|- PULSE

® SIGNAL (<event>,{g:r} H 1/0 CONTROL STATEMENTS
® READ (<COMPOOL block name>);
PHOCESS .CONTROL FUNCTIONS ® WRITE (<COMPOOL Lblock name>};

e bit function call::=EREAD(<event>)} ® ACCESS (<COMPOOL block name>);

{ P < >
® bit function gall..-!NVOK.F.D( task name>) B T (<2OMPOOL block named);
e i;nteger function Gall::=TIME

e integer function call::=MINOR'CYCLE’NUMBER ® TRIGGER (<COMPOOL block name>,<time>,<delta time>);

The Process Control statements describe the real-time
structuring and control of the Task hierarchy. The SCHEDULE
statement was the most complex of these statements and its
execution sets up the environment in which the Task will
execute. That is, the SCHEDULE statement upon being executed,
describes the priority of the task being scheduled and the
conditions, both event and time, under which it will be executed.

The CANCEL and TERMINATE verbs de-scheduled or simply
prevented the current execution of a Task, respectfully. The
various wait statements allow a task to wait for an event or
for a relative or absolute time before it is executed. The
SIGNAL statement allows a task to control the setting of a
real-time event.
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The 1/0 Control statements allow the reading and writing
of the global Compool Blocks. The READ and WRITE statements
are used with LOCAL'COPYs while the ACCESS and BROADCAST
statements have a parallel usage for GLOBAL'COPYs. The time
granularity of the DAIS system is based upon the concept of
a major frame and minor cycles within that major frame. DAIS

has nominally defined a major frame as one second but this

can be modified to any reasonable value. Within the current
DAIS system, there are 128 minor cycles per major frame.

With respect to task executions, execution time granularity

is that of the minor cycle or 7.8125 msec for the current time
partitioning. When weapon release or other minor cycle time
critical events are to occur, it is desirable to have more
precision than this minor cycle time granularity would allow.
The TRIGGER statement supports this need and is currently

specified to have an accuracy of one millisecond.

While DAIS has chosen this set of executive primitives,
it differs from those found in languages such as HAL/S, SPL/I,
and PEARL. 1In each of these languages, the real-time con-
structs vary, yet each is sufficient to handle real-time
process control. The importance of a particular set of such
primitives is slight compared to the advantages of having a 1

single stardardized set.

3.4 Avionics Environment

Central to the DAIS concept is the avionics specific

nature of the design. Avionic systems have unique requirements
that are not always applicable to ground based systems. Since
these requirements are unique to embedded computer systems,

it was des:rable to provide the applications prograrmer with

a set of functions or subroutines of commonly used type.

This prevents duplication of development effort and standar-
dizes the calling sequences for these commonly used, avionics

subroutines.

24

e e, o -
TEVEAN i s




The DAIS Mission Software developed a number of com-~
monly used subroutines (Comsubs) for use by all applications
programmers. Table 6 1lists the Comsubs currently available
on DAIS.

3.5 Managerial Control: DAIS Software Standards

One of the important attributes required for the development
and control of a large software project is the definition and
enforcement of a set of design and programming standards.
Under the DAIS Mission Software contract, DAIS Mission Soft-
ware standards were developed that defined standards, rules
and guidelines to be followed by the software engineers in
the design, implementation, verification and documentation
of the DAIS Mission Software. The Standard was intended to
be an evolving document. Beginning from the baseline docu-
ment, the standards were added to and otherwise revised to
reflect the actual experience gained from the DAIS Mission
Software development effort. Not only did these standards
define the guidelines, but they were also authoratative.

Any variance from the standards required the approval of

the Chief Programmer who had the technical authority for

the project.

The software standards document continued to evolve
throughout the mission software development effort. 1In
its final evolution, the standards consisted of five
chapters and a set of six appendices. A brief description
of the standards is as follows:

1. Introduction

2. Architectural Background - This chapter presents the
basic overview information on the DAIS system required
for the full understanding of mission software.

25




ae

TABLE 6. DAIS COMMONLY USED SUBROUTINES (COMSUBS)

Comsub

Definition

Vector/Matrix Comsubs:

MXM REENTRANT (AM,BM,CM)
MXV REENTRANT (AM,BV,CV)
TRANSPOSE REENTRANT
{AM, BM)
VADD REZENTRANT (AV,BV,CV)
VDOT REENTRANT (AV,BV:CS)
VUPDAT REENTRANT
{AV,3C,CV)

Special Function Comsubs:

BINARYSEARCH REENTRANT
{ARRAY ,VALUE ,NUM: OUT)

REVERSZ REENTRANT
(WORD ,NUM:DROW)

SMOOTH REENTRANT
(SMQOTHED VALUE, RAW'
VALUZ,TAU,DT: SMOOTHED®
VALLU 3)

Formatting Comsubs:

ALTSETZORMAT REENTRANT
(REF 'PRES : CHAR)
CNTRSTATIONFORMAT REEN-
TRANT (STATIONS,CHAR)
CONVERTLATLONG REENTRANT
(RAD,DEG:SEC)
DEGREEZFORMAT REENTRANT
(RADLANS : CHAR)
DENORMALIZE REENTRANT
(INPJT,SF,0UTPUT)
ELEVDHTORMAT REENTRANT
(ELEV,HGT :CHAR)

Matrix-matrix product
Matrix-vector product

Transpose of a matrix
Vector addition
Vector dot product

Vector update

Binary search on an array

Reverses the hits of a word

First order lag smoothing
comsub

Formats reference pressure
for display

Formats stations in two
strings

Formats latitude/longitude
in degrees and seconds

Formats radians into
degrees for display

Denormalizes floatincg
point values

Formats elecvation/
decision height for
display
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TABLE 6.

(cont.)

Comsub

Definition

Formatting Comsubs (cont.)

FLOATFORMAT REENTRANT
(NUMB, COUNT : CHAR)
FLYTOFORMAT REENTRANT
(PT,RAD,DIST :CHAR)
FUZINGFORMAT REENTRANT
(FUZING:CHAR)
ILSCHNGFORMAT REENTRANT
{FREQ, COURSE : CHAR)
INTERVAL FORMAT REEN-
TRANT (INTERVAL :CHAR)
JETPAGEFORMAT REENTRANT
(JET 'TABLE : CHAR)
LATLONGFORMAT REENTRANT
{RAD,PTYPE:CHAR)
LIMIT REENTRANT (VAL]1,
LOW,HIGH:VAL2)
MAGVARFORMAT REENTRANT
(RAD:CHAR)
IMODEFORMAT REENTRANT
(MODE : CHAR)
NORMALIZE REENTRANT
(INPUT,SF:0OUTPUT)
OFFSETFORMAT REENTRANT
(ID:CHAR)
QUANIDFORMAT REENTRANT
(QUAN, ID:CHAR)
STATIONFORMAT REENTRANT
(WEAP'STATIONS : STATION'
WORD)
TCNCHNGFORMAT REENTRANT
(CHAN, XY : CHAR)
U1GENCODE REENTRANT
(NUMB, COUNT : CHAR)
UHFCHNGFORMAT REENTRANT
(FREQ:CHAR]
WINDSETFORMAT REENTRANT
(RAD,VEL:CHAR)

l

Formats a floating point
integer for display

Formats fly-to values for
display

Formats the stores fuzing
for display

Formats the ILS data for
display

Formats the weapon interval
for display

Formats the programmed jetti-
son data for display

Formats latitude/longitude
for display

Limits a value at upper and
lower limits

Formats the magnetic varia-
tion for display

Formats the release mode
for display

Normalizes a fixed point
number

Formats offset data for
display

Formats the stores quantity
and name for display

Formats the stations for
display

Formats the TACAN channel
for display

Formats an integer for
display

Formats the UHF channel/
frequency for display

Fcrmats the windset data for
display

Note: 1) All vectors are 3 dimensional.
2) All matrices are 3 by 3.
3) Vectors and Matrices are declared as Tables.
4) The last argument in the parameter list is
the "outpu-" argument.
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Software Structure - This chapter discusses the structure
design requirements for the Applications Software. The
structuring is based on Higher Order Software (HOS) prin-
ciples as applied to the DAIS system.

Programming Standards - This chapter contains the standard
required for the DAIS Mission Software in general and the
Applications Software in particular. It discusses:

e DAIS Language Usage

e Application Software Naming Conventions

e Building Blocks for Application Software

e Tasks and Events: Their Control and Interaction.

It is this chapter, more than any other, that is used as
a reference by the engineer and programmer in the writing
of JOVIAL routines.

Executive Programming Standards - This chapter contains
information unique to the Executive development, parti-

cularly naming conventions and structuring requirements.

Appendix I. - The required system and project information

necessary to actually build a software

mission.

Appendix II. - Details of the Executive-Application Inter-

face which serve as an Interface Control

Document for the particular implementation.

Appendix III. - The system and project unique information

required for the proper functioning and

execution of the executive implementations.

Appendix IV. - The documentation standard.

Appendix V. - The Testing and Verification requirements

associated with the development of the

Mission Software.

Appendix VI. - The current set of DAIS Comsubs.
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3.5.1 Programming Standarcs

The objective of the programming standards chapter
(Chapter 4) of the software standards is to transform the

functionally stated design reguirements into a set of speci~

fications in terms of the programming language being used.

The specifications are in turn documented using the documen-
tation standards (Appendix IV) as a guide.

Specification proceeds in a top-down manner.
Beginning with the Master Controller, the hierarchical
control map previously derived from the requirements design
was reconsidered in terms of JOVIAL programmable blocks and
executive capabilities., Based on mission requirements, (e.g.,
time responses, on-line computations) the functions to be
performed were characterized as periodic or aperfbdic proce-~-
ses or sequential (either in-line or 'called') subroutines.
Specific details such as algorithms, data structure and name
scope were }ntegrated into this framework. At each succeed-
ing hierarchical level, Controller and Calculator modules were
designed. The internal structure of a lower level module
was not specified until its Controller's input, process and
outputs were completely defined.

Sections of the programming standards chapter specify
guidelines for the use of JOVIAL and the executive system.
This permits the detailed design and implementation of the

DAIS Mission Software. The main areas addressed were:

e Naming Conventions

e DAIS Language Usage of J73/I

e DAIS Built-In Functions

e DAIS Comsubs

e Real-Time and Executive Interface

Due to the differences in the nature of Applications
Programs versus System Programs, a special chapter on Execu-
tive Programming Standards was required. While the basic

programming practices hold, differences occur of necessity
with respect to:
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e Naming Conventions
e Language Use of J73/I

3.5.2 Documentation Standards

DAIS Mission Software was designed using a combination
of two basic programming styles: structured programming and
top~-down techniques. The structured programming concept is
characterized by a limited, ordered set of program constructs.
The use of top-down techniques results in program flow which
can be compared to the organization of a book; the "table of
contents" specifies the entire program flow on page one and
each "chapter" is the expansion of a particular block. Con-
ventional flow chart techniques cannot adequately convey these
organizations. The block structure, the scope, and the data
flow inherent in any structured top-down program must be

represented by a structured flow chart.

The DAIS Mission Software made use of a flowcharting
tool, IRATE, that automatically generated structured flow-
charts from a single command string. The basic elements of
these flowcharts represent J73/I constructs. Ideally, all
flowcharts should be computer generated by a single tool for
consistency, however, equivalent flowcharts, generated by
hand using the same symbols, were acceptable when rapid docu-

mentation turnaround was required.
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SECTION 1IV.
TECHNICAL DESIGN

Operational Flight Program (OFP) Software may be broadly
divided into two parts: Executive (or Systems) Software, and
Applications Software. Figure 2 shows this logical dicho-
tomy along with a lower level of partitioning. It should be
noted that there are many possibilities of partitioning the
various avionics functions. For example, the Applications
Software's Control Programs could be placed under the Execu-
tive (System) Software area. The structure shown is one
possibility that reflects the OFP used for the DAIS Mission
Software.

4.1 Executive Software Overview

There are characteristic actions that must be performed
by avionic and other real-time process control computers.
These include the process control of real-time tasks (and
their interactions); specialized I/0; system initialization;
and system control considerations. Man-rated or process con-
trol systems, often closed loop, must continue to functiocn
if at all possible in contrast to non-real-time systems which
may "crash" without creating hazardous situations. These
four areas constitute the Executive Software and are shown

in Figure 3 along with a lower level of partitioning.

The development of an executive can be viewed from two
different viewpoints. In one view, the executive raises the
level of the Applications Software interface. Instead of
each Application Program being involved with the details of
I/0 (e.g., bus control), a logical interface is available
to the Applications programmer as a primitive which performs
the function desired (e.g., READ). In addition, system-wide
considerations such as the Monitor/Recovery function are
removed from the concern of each applications program by
providing the protection at a "higher" level.
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In the other view, an executive is used to optimize sys-

tem resources. That is, the executive attempts to maximize
CPU and I/0 subsystems' efficiency. This is accomplished by
multiprocessing and by controlling the details of the 1/0
interactions.

Avionic system designs can also be considered from these
two different viewpoints. For example, the principle advan-
tages involved in raising the level of the system interface,
from the Applications Software point of view, is to make the
Applications Software independent of:

® The processor-memory-I1/0 network (e.g., single #
processor, multi-processor, federated or distri-
butive systems).

® Details of I/0 implementation (direct I/0 or
multiplexed bus).

® Partitioning of software across processors. l

e Executive implementation (e.g., static task

tables or dynamic task tables).
In addition, it is desirable to have:

e Automatic Synchronization and control (e.g., of
data conflicts; I/O handling; interprocessor 4
communication) .

e Invariant real-time capabilities on different '

processors or implementations.

In orcer to obtain these benefits the brunt of the dif- 3
ferences between various system designs need be borne by the

Executive foftware which is processor specific. Not only do
processor instruction sets and implementation languages vary,
but so do the processor-memory-1/0 networks, I/0 mechanisms,
and reliability requirements. Yet with all these possible
variances, the basic functions required by the Applications

Software roemain constant. It is incumbent on the Executive

i i ke
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Software to support the desired Applications Software inter-
face, while simultaneously optimizing the resources of a given

system.

In the current DAIS implementation, the 1/0 functions
of the network are controlled in a master/slave fashion.
One processor is designated the Master Processor and any
remaining processors are termed Remote Processors. The
Master Processor has responsibility for the control and ser-
vicing of the data bus including synchronous and asynchronous
message traffic control among the system components. The
Master Processor thus serves as the Bus Controller for the

network.

Given the functional breakdown of the DAIS Executive
in Figure 3, the actual Process Control portion of the
executive function must be distributed among the processors
to correctly implement real-time process interactions. The
functional areas within the process control reflect the struc-
tural elements being handled; task, events, data, and time;
interfaces both to the Applications Programs and to the physi-
cal hardware and additionally the control flow through the

process controller itself.

The I/0 Control portion of the executive is located in
the Master Processor, each remote processor containing a
simple interrupt handler., The I/O Control functional areas
in turn reflect the standard elements being handled: the
bus and time; the hardware interface; and any special mass
memory interface.

The Process Control and I/0 Control functions form the
core of the DAI3S Executive. The Systems Initialization func-
tion is somewhat dependent on the actual system and operating
procedures while the Systems Control is concerned with an
extra layer of Master/Recovery and Reconfiguration capability.
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The DAIS Executive implementation optimizes process and
I/0 control through the use of executive tables. These tables
are statically generated at pre-run‘time‘instead of being
dynamically linked at run time. This table generation func-
tion is performed by the Partitioning, Analyzing and Link~
Edit FACility (PALEFAC).

Relating this terminology, the physical and functional
breakdown of the DAIS Executive system is shown in

Figure 4,

FIGURE 4, EXECUTIVE STRUCTURE BREAKDOWN
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4.2 Application Software Overview

The Application Software of an Operation Flight Program
(OFP) is responsible for implementing all phases of an air-

craft mission. It must compute navigation, weapon delivery
and guidance data; it must be able to input data from the
avionics sensors and in some cases output control commands

to the sensors; it must communicate with the cockpit controls

and displays; and it must be able to control the periodic
execution of the above functions.

A general partitioning of the Applications Software is
shown in Figure 5 along with a lower level of partitioning.
Applications Software can be viewed as having three conceptual
roles: Control, Equipment Interface, and Avionics.

Control is reflected in Figure 5 as "Control Programs".
These programs control the sequencing of the Avionics functions.
High level control should not be carried out within algorithmic
functions but rather should be implemented as separate control
software. This then allows the Avionic functions to be inde-
pendent of mission phases.

4 Equipment Interface is reflected in Figure 5 as "Equip-

ment Interface". These programs form a buffer between the
sensors, controls and displays and the rest of the Applica-
3 tions Software. Each module in this segment is responsible
for converting/formatting data for the equipment since the
application software employs floating point while the equip-
1 ment I/0 is in fixed point quantities. Equipment specific
testing can also be carried out in these modules.

Avionics is reflected in the Figure 5 as "Pilot Inter-
face"; "Guidance, Navigation and Control"; and "Weaponry".
These modules perform algorithmic and bookkeeping functions;

3 only a low level of control is to be found in these routines,
’ Avionics has been further broken into these three functional
areas due to their independent characteristics and purposes.
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The actual development of OFP Applications Software is

highly affected by the range of functions necessary to meet
Mission Requirements. While the Mission Requirements usually
entail the functions deliﬁéated in Figure 5, each of these
functions may be quite elaborate with many possible sub-func-
tions or may be so simplified as to be included in another
function, e.g., Navigation may become a part of Weapon Deliv-
ery. Other factors that affect the design of the Applications
Software include the sensor available to perform the avionics
functions; the pilot controls and displays used; the inter-
faces to the sensors, controls, and displays; the executive
services available; the subsystems monitored; and the re-
quired backup and reconfiguration ability.

Within the framework of meeting specific Mission Require-
ments, the Application Software should also fulfill several
other goals in order to effectively reduce the system's total

life cycle cost:

1. Ease of comprehension, generation and documentation -
The software should be understandable, easy to write, and
easy to document. This will in turn lend to the accomp-
lishment of the other goals,

2. Ease of Modification and Maintenance - The software
should be able to easily changed to meet new requirements

and interfaces.

3. Ease of Testing - The software should be constructed so

that it is easy to test and isolate errors.

4. Portability and Flexibility - The software should be able
to be used with different avionics systems and/or differ-

ent avionics missions.

5. Well-ordered Structure -~ The Applications Software should
consist of (largely) independent modules that are well-

ordered relative to each other.




6. Reliability - The software should be highly reliable and
should provide graceful degradation of system capabilities
in case of component failure, where possible.

7. Execution time and size -~ The software must be able to
meet the real-time constraints of the avionics mission,

and the memory size limitations.

One of the goals of the DAIS system was to develop mission
software that was useable not just for one OFP, but could be
easily modified to meet the needs of several OFPs. The DAIS
Applications Software has been developed specifically to meet
this goal.

The DAIS system can be thought of as a multilayered
system. At the lowest level, as shown in Figure 6, is the
hardware. The executive forms a middle layer in interfacing
with the hardware and providing a general functional interface
to the applications software. At the top level is the applica-
tions software, which can itself be further divided into layers.

Three levels of applications software are shown in Figure 6.

The lowest applications software level is the equipment
interface. This includes both the Equipment Interface soft-
ware, which interacts with the sensors, and portions of the
Pilot Interface software, which interact with the controls
and displays. This software effectively isolates the compu-
tational portions of applications software from the particu-

lar equipment interfaces.

The middle layer of applications software is the compu-
tational level. This is the heart of the applications soft-
ware, where all "real" computations occur. Only localized
control is done in this area and no equipment interface con-
trol. This layer includes the Navigation, Guidance and Con-
trol; Weapon Delivery; and Stores Management Computational

Software; and the non-equipment interface portions of the

Pilot Intexface Software.
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The top layer consists of the Control Programs. This
software does not perform calculations per se, but controls
which portion of the middle layer is active.

The applications software is isolated from the hardware
by the executive. The hardware may change completely without
being visible to the applications software. The computational
portion of the software is further isolated from the sensors,
controls, and displays by the equipment interface. A sensor
may change, but only the equipment interface will require
modification as long as the sensor is more or less functionally
the same. The computational algorithms are also separated
from the global control software. Instead of having the con-
trol logic sprinkled throughout the software, it is isolated
to the extent possible. This leaves the computational modules
as mainly algorithmic modules. Changes to the sequencing or
control of the modules or changes to equipment interface do
not affect the actual algorithmic software.

Changes to the system are thus usually localized to one
program or at least one area. Also different types of soft-
ware are functionally separated. Tested algorithms do not
usually nead to be retested for changes in the control soft-
ware or sensor interfaces. The layering thus supports ecasy
modification of the software.

4.3 Application/Executive Interface

Within the life cycle of an avionics system, there usu-
ally arises a requirement to upgrade the system with respect
to some equipment (e.g., sensors, weapons) or some algorithm
(e.g., steering, navigation). These changes in turn dictate
modification cf the avionics Operational Flight Prodgram (OFP).
The first digital avionic processors were programmed in
assembly code and were difficult to modify. The code had to
be hand crafted in order to obtain all the performance desired.
Modification to such OFPs was not only difficult, but the

addition o any new feature oftenr required a major redesign
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and deletion of current features. The Air Force B-1 and

F-16 programs have specified the use of a Higher Order Lan-
guage (HOL), J3B, for their avionic systems. Similarly, NASA
has selected HAL/S for the Space Shuttle. The use of a HOL
reduces the classes of errors that are possible, and greatly
aids in the understanding of and modification of the resul-
tant OFP in a much more straightforward and less error prone
fashion. The use of a HOL has also largely isolated the OFP
from the characteristics of the target machines. This separa-
tion of the OFP from specific machine characteristics in turn
allows for initial code development and module testing on a
large host computer. This has the advantages of easier access,
earlier development and usually more complete diagnostic tools
for the software development than available with the actual
target computer.

The DAIS Mission Software operates in a real-time environ-
ment. The Software must be able to respond to sensors and
control actuators. It must have the ability to execute tasks
"periodically” in order to sample data or to execute an algor-
ithm which updates current state information. The capability
to monitor the real-time control process itself must also be
present. This is required in order to take corrective action

upon sensor or actuator failure, or upon failure in the control

program. The execution of some missions requires the capability

of executing tasks at appropriate times. These forms of task
interaction (the initiation of tasks at a time or upon command;
the periodic execution of a task; the conditional execution

of a task on the occurrence of an event or on the detection

of an error) require certain basic executive capabilities.
These capabilities are of necessity to be found in real-time

process control executives.

The specification of the executive interfaces in JOVIAL
is, in effect, a real-time language augmentation to JOVIAL
at least from the Applications Software point of view. At
the same time it provides a set of "executive primitives"
that define the basic operations which the executive must per-

form upon the tasks. 43




The description of the various real-time statements and
the executive interface given below therefore becomes part of

basic programming language used in DAIS Applications Software.
The syntax and semantics of the various real-time statements

are the allowable "real-time statements” for the DAIS Mission
Software. Other process control languages have of necessity
similar real-time constructs. Examples of such languages
include NASA's HAL/S, the US Navy's SPL/I, and the European
PEARL.

The augmented real-time statements are of three forms:
Real-Time Declarations, Real-Time Built-In Functions, and
Real-Time Statements. The Declarations provide the special
data structure required for the DAIS executive system. The
Statements are the real-time primitives that interact with
the executive. The Built-In Functions allow access to

certain real-time information.

4.3.1 Real-Time Declarations

Real-Time Declarations are used to declare the real-
time entities referred to within a Task. There are four kinds

of Real-Time Declarations:

e Task Declarations
® Event Declarations
e Compool Block Declarations

e Comsub Declarations

4.3.1.1 Task Declarations

Task Declarations are used to declare tasks referred to
in Real-Time Statements. They are used to create the appro-
priate data base required for task manipulation within the

DATS system. The Task declaration has the following form:

— - —_— - ———

f “task statement>::= TASK {(“task name>):
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A TASK declaration must appear for each task referenced
within the compilation unit.

Examples: TASK (CPO2CONFIG) ;
TASK (SP21WIND) ;
TASK (QP16TACANIN) ;

4.3.1.2 Event Declarations

Event declarations are used to declare Events referenced
in the WAIT, SIGNAL and EREAD real-time constructs. They
are used to create the appropriate data base required for
event manipulation within the DAIS system. The EVENT delcar-
ation has the following form:

<event statement>::= EVENT (<event name>);

The event must be declared whether it is an explicit
event provided by the Applications Software programmer or an
implicit Compcol block update, or implicit Task state event.

Examples: EVENT (EOOSIMFKSK) ;
EVENT (SPO4NAVPROP) ;
EVENT (IC33SROUT) ;

4.3.1.3 Compool Block Declarations

Compool block declarations are used to declare any Compool
Blocks referenced in READ, WRITE, ACCESS, BROADCAST, or TRIGGER
statements. There are two types of Compool block declarations.

wocal - used to create both the local copy of the compool
block and to allow controlled access to the refer-
enced compool. This declaration is used in normal

tasks.

Giobai- used to access the referenced compool block. This

ieclaration can only be used in privileged mode tasks.
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The two Compool block declarations have the following
form:

<local copy statement>::= LOCAL'COPY (<data block>, !
<all types>;;

L}

<global copy statement>::= <GLOBAL'COPY>{(<data block>,

<type>);
<all types>::= <type>!TRIGGER FORCED'READ

<type>::= READ|WRITE|UPDATE

The type identifies how the Compcol block is referenced
within the task in which it is declared. TRIGGER means that 1
it is referenced only in TRIGGER statements, and may appear .
only in LOCAL'COPY statements. READ means that the compool
block is referenced only in READ or ACCESS statements. WRITE
means that the Compool block is reterenced only in WRITE or
BROADCAST statements. UPDATE means that the Compool block
is refererced in both READ or ACCESS, and WRITE or BROADCAST
statements within the task. FORCED'RFAD means that the Com- h

pool block is referenced only in FORCED'READ statcments.

Examples: LOCAL'COPY (NCO7DIRCOS,UPDATE) ; |
GLOBAL'COPY (PC60SWITCHES,READ) ;
GLOBAL'COPY (NCS5CLASER,WRITE) ;
LOCAL'COPY (PC50SWITCHES ,FORCED 'READ) ;
LOCAL'COPY (SC91RFLEASE, TRIGGER) ;

Since GLOBAL'COPY statements are restricted to PRIVILEGED'

MODE'TASKs their usage is also correspondingly restricted.

4.3.1.4 Comsub Declarations

Comsub declarations are used to declare Comsubs called
within the Task. They are used to create the appropriate
inter-action with the DAIS system. The Comsub declaration

has the following form:
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<comsub statement>::= COMSUB (<comsub name>);

A Comsub declaration must appear for each Comsub refer-
enced within the compilation unit. It should be noted that
the DAIS Built-In functions (e.g., SIN, COS) are not con-
sidered as Comsubs but rather as part of the basic language
available to the programmer and should, therefore, not be
declared.

Examples: COMSUB (MXV) ;
COMSUB (VDOT) ;
COMSUB (TRANSPOSE) ;

4.3.2 Real-Time Statements

The Application Software requests the services of the
Executive through Real-Time Statements. There are eleven
kinds of Real-Time Statements:

e Schedule Statements
e Cancel Statements

® Terminate Statements
® Wait Statements

e Signal Statements

e Read Statements

® Write Statements

e Trigger Statements

® Access Statements

e Broadcast Statements
® Porced Read Statements.

Real-Time Statements present the Applications Software
programmer with the basic primitives to be used in dealing

with real-time processes and for interfacing to the executive.

They pass appropriate information to the executive as parameters.
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4.3.2.1 Schedule Statements

Schedule Statements are used by a Task to Schedule another

Task. A Schedule Statement must include the following infor-
mation:

e The name of the Scheduled Task

e The priority of the Scheduled Task

e The Latched Conditions (if any) in the Event
Condition Set of the Task

e The Unlatched Conditions (if any) in the Event
Condition Set of the Task

e The period and phase of a Minor Cycle Event
(if any) in the Event Condition Set of the Task.

The Schedule statement has the following form:

<schedule statement>::=

. _{<unlatched>) f<latched>
SCHSDULE(ftask name>, PRICRETY=<prio”

H H

<prio”::=<intecyer>|-<integer™|prIVILEGED
<unla*ched>::=,UPONXevent expression>
<latched>::=,IF<event expression>

<tipe field>:::,PHASE=inteqger,PERIOD=integer

<event oxpxousion>::=<factor>|<fnctor>AND<event expression>

<factor>::=(<factor2>]'<factor2>
<factor2»::=<or set>=ON|<or set>=0rF |<or set>
<or svt>::=<event>|<even:>OR<or set>
<integer)::= a legal JOV-aL integer constant

<eventd ::= <ext name>
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The semantics of the SCHEDULE statement are as follows:

The <task name> is the name of the task to be invoked.

The <prio> field indicates the priority of the task to be
scheduled. This value may be either an absolute integer
or a negatively signed integer, or the word PRIVILEGED. If
it is an absolute integer, then this is the "absolute"
value of the priority of the task with respect to the
DAIS Software system. The smaller the value, the higher
the priority. If <prio> is a negative integer, this
assigns the priority relative to the scheduling task and
establishes the relative priority among all of its sib-
lings. A <prio> of -1 establishes the scheduled task as
having a priority immediately lower than that of its
parent, the one who scheduled it. A <prio> of ~2 is of
priority immediately less than that of the sibling task
scheduled with a <prio> of -1. If the <prio> is the word
PRIVILEGED, the task is scheduled as a privileged mode
task.

Priorities used by the DAIS Mission Software Tasks are
of relative priority. Exceptions to this rule require
central approval. The use of absolute priorities is
limited to time critical tasks, and in general will be
associated with the use of the TRIGGER statement.

The Latched and Unlatched parts of the Condition Sets
are defined by their respective <event expression>s.
The syntax of the event expression allows the combina-
tion of events to be evaluated as either ON or OFF in
various combinations with AND and OR.

The integer associated with PHASE must take a value from
0 to PERIOD-1 indicating the appropriate phase.
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¢ The integer associated with PERIOD must be either 1,
2, 4, 8, 16, 32, 64, or 128. This corresponds to the
number of minor cycles that must elapse before the task
is scheduled again.

Examples:

SCHEDULE (QP33FLRSR, PRIORITY=PRIVILEGED, PHASE=3,PERIOD=8;

SHCEDULE (QP11DOPOUTCOM, PRIORITY=-15,IF E035DOPON=ON,
PHASE=1,PERIOD=4);

SCHEDULE (CPOSIMFKHAND , PRIORITY=-5,UPON E005IMFKSK=ON) ;

4.3.2.2 Cancel Statements

The Cancel Statement is used by one Task to put another
Task into an UNINVOKED state. The Cancel Statement includes
the name of the Task to be Cancelled. This Task must either
be the Task within which the statement is executed, or a son
of that Task. 1If a son is cancelled, all the dependents of
the son are also cancelled automatically. If a Task attempts
to Cancel itself, it will not affect its own state, but will
Cancel all of its descendants. If a Task specifies itself
in a Cancel Statement, it must be declared in a Task Declara-
tion within itself. The Cancel Statement has the following

form:

<cancel statement>::= CANCEL {(<task name>);

Here <task name> is the name of the task to be cancelled.

Examples: CANCEL (QPO2IMSOUTTORQ) ;
CANCEL (SP40UHFCHG) ;

4.3.2.3 Terminate Statements

The Terminate Statement functions identically to the
Cancel Statement, except that it places the named Task into
the INACTIVE state instead of the UNINVOKED state., The

Terminate ¢“tatement has the following form:

50




<terminate statement>::= TERMINATE (<task name>);

Here <task name> is the name of the task to be terminated.

Examples: TERMINATE (QP60DEKIN) ;
TERMINATE (DP41IMFKVAR) ;

4.3.2.4 Wait Statements

Wait Statements are used by Tasks to place themselves
into the WAITING state pending certain event occurrences.
There are four forms of Wait Statements in the DAIS system.

e Mission Time Waits
e Relative Time Waits
e Latched Waits, and
e Unlatched Waits.

These various Waits are implemented in the following form:

<wait until statement>::= WAIT'UNTIL (<time>);
<wait for statement>::= WAIT'FOR (<time>);
<wait statementsy::= WAIT (<events, <«state>):;
<time>::= <number> MINOR'CYCLES
' | <cnumber > SECONDS
<state>::= ON |OFF |+PULSE | ~PULSE
<number>::= a legal JOVIAL unsigned

integer constant

51




RS R

The WAIT'UNTIL is a Mission Time Wait and places the
Task into the WAITING state until the specified Mission time
has occurred. If the specified time has already occurred,
the task is not put in a waiting state.

The WAIT'FOR is a Relative Time Wait and places the
Task into the WAITING state for a specified period of time.
If the specified period is non-positive the task is not put

in a waiting state.

It should be noted that in either the Mission or Relative
Time cases, the time may be specified in units of either
MINOR'CYCLES or SECONDS.

The WAIT statement is used to place the Task into the
WAITING state with respect to an event which is named in
the <2vent> field. Whether the statement is Latched or
Unlatched depends upon the <state> designated. ON and OFF
reflect Latched events, while +PULSE or -PULSE reflect
Unlatched events.

A Latched Wait places the Task into the WAITING state
until the specified Event reaches the specified “desired
value" of ON or OFF. If the Event already has the desired
value, the task is not put in a waiting state.

An Unlatched Wait places the Task into the WAITING
state until the specified Event reaches the specified "desired
value" of ON or OFF. If the Event already has the desired

value, the task is not put in a waiting state.

An Unlatched Wait places the Task into the WAITING state
until the specified Event receives a +PULSE (i.e., until the
event is set or signalled ON) or receives a ~PULSE (i.e.,
until the event is set or signalled OFF). The task is always

put in a waiting state.

Examples: WAIT (SPO4NAVPROP,OFF) ;
WAIT'FOR(2 MINOR'CYCLES) ;
WAIT'FOR (122 SECONDSO);
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4.3.2.5 Signal Statements

A Signal Statement sets a specified Event to a speci-
fied value. The form of the Signal Statement is as follows:

<signal statement>::= SIGNAL “eve“t>'{§g§} )

Here <event> is the name of the event to be set to the value
ON or OFF as designated.

Examples: SIGNAL (EOOSIMFKSK,ON) ;
SIGNAL (E035DOPON,ON) ;
SIGNAL (E035DOPON,OFF) ;

4.3.2.6 Read Statements

A Read Statement copies the value of a specified Compool
Block into the corresponding Local Copy. The form of this

statement is as follows:

<read statement>::= READ (<compool block name>);

<compool block name>::= <ext name>

Here the <Compool block name> is the name of the Compool block
to be read into the corresponding Local Copy.

Examples: READ (NCO7DIRCOS) ;
READ (CCO4REQUEST) ;

4.3.2.7 Write Statements

A Write Statement copies the corresponding Local Copy
into the specified Compool Block. The form of this state-

ment is as follows:

<write statement>::= WRITE (<compool block name>);
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Here the <Compool block name> is the name of the Compool block
which is to receive the value of the Local Copy.

Examples: WRITE (NCO7DIRCOS) ;
WRITE (WCO5SOLQ) ;

4.3.2.8 Trigger Statements

A Trigger Statement requests the Executive to send the
Local Copy of the specified Compool Block to the appropriate
remote terminal at a specified time. The specified time must
be two Minor Cycles and one Major Frame from the time the
Trigger Statement is executed. The form of this statement

is as follows:

<trigder statement>::= TRIGGER (<compool block name>),

<trigger time> <delta time>);

<trigger time>::= <numeric formula>

<delta time>::= <numeric formula>

Here the <«Compool block name> is the name of the Compool block
which is =0 receive the value of the Local Copy at the desig-
nated critical time. Time is specified by two fields, <time>
and <delta time>. The <time> is specified in Mission Time

and is scaled in units of minor cycles. The <delta time>
field is scaled in clock units of, and has a granularity of,
one millisecond. This <delt~ time> field provides the fine
granularity for the TRIGGER statement. It will be in effect
added to the <time> field by the executive in order to obtain

the designated critical time.

For & single occurrence, the <time> field should in
itself be sufficient for critical time calculations. When
multiple occurrences are to occur spaced relative to each
other, the <delta time> field provides for finer time granu-
larity than a minor cycle. TRIGGER may not be used in

Privileged Mocde.
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Example: TRIGGER (IC91RELEASE, TGO,DELTATIME) ;

4.3.2.9 Access Statements

The Access Statement is used in Privileged Mode tasks
to correspond to the Read Statement in normal mode tasks.

Its form is:

Y

<access statement>::= ACCESS (<Compool block name>); }

? Here the <Compool block name> is the name of the Compool block
which is being directly accessed.

Example: ACCESS (PC23INSDAT) ;

4.3.2.10 Broadcast Statements

The Broadcast Statement is used in Privileged Mode tasks
to correspond to the Write Statement in normal mode tasks.
The form of this statement is:

<broadcast statement>::= BROADCAST (<compool block name>);

Here the <Compool block name> is the name of the Compool block
which is being broadcast.

Example: BROADCAST (IC73IMUOUT) ;
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4.3.2.11 Forced Read Statements

The Forced Read Statement is used in Normal Mode tasks
to read data from a device, upor demand of the task. There
is an inherent time delay in this statement since 1t must

instruct the device to send the data teo the specified Com-~

entibll

pool Block. The form of this statement is as follows:

<forced read statement>::= FORCED'READ (<Compool block name™);

J
4.3.3 Real-Time Built-In Functions
Real~-Time Built-In Functions are used by the Application
# Software to "read" the value of certain real-time entities.
These are used by the DAIS Mission Software as if they were
Built-In Functions. There are four Real-Time Built-In Func-
tions.
® EREAD
¢ INVOKED
e T IME
e MINOR'CYCLE'NUMBER
i {
N 4.3.3.1 Event Read Function :
2 EREAD vields the current value of the Event passed as its

argument. This Event must have been previously declared in

an Event Declaration. The form of this function is as fcllows:

<bhit function call>::=  EREAD {<event>)

Hore sovent ™ 1s the name of the event whose value is to be
rcad,  The EREAD of an Implicit Task state cvent will be ON

1t the Tash i1gs in the ACTIVE state and OFF 19 the Task is in

the INACTIVE state.




4.3.3.2 Task Event Read Function

INVOKED is applied to a Task. It yields ON if the Task
is INVOKED, OFF if it is not. This Function may only be
applied to a Task scheduled within the Task in which the Func-
tion is used. The form of this function is as follows:

<bit function call>::= INVOKED (<task name>)

Here <task name> is the name of the Task whose INVOKED state

is being tested.

4.3.3.3 Time Read Function

TIME reads the Mission time. This is the time since
system initialization and is measured in number of Minor

Cycles. The form of this function is as follows:

<integer function call>::= <TIME>

4.3.3.4 Minor Cycle Read Function

MINOR'CYCLE'NUMBER reads the value of the current minor
cycle number. The value read is returned as an integer with a
value between 0 and 127. The form of this function is as

4 follows:

<integer function call>::= MINOR'CYCLE 'NUMBER
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4,3.4 Real-Time Directives

Real-Time Directives are compile-time statements which
alter or enable/disable the normal mode Real-Time Constructs.

4.3.4.1 Privileged Mode Directive

There is a single mode directive to distinguish normal
mode from privileged mode tasks. This directive must be the

first statement in a privileged mode task. Its format is:

<privileged mode task directive>::=

PRIVILEGED'MODE'TASK;

A <privileged mode task> is a synchronous task that is effec-
tively executed at a very high priority. It is executed in
each appropriate minor cycle before all normal mode tasks.

It may directly reference the global Compecol blocks, and

thus can »e used only in special situations. Its normal use

is for a task communicating with a piece o: eguipment.

Tasks which are directed to be "privileged mode" must

have the following characteristics.
e Synchronous

e short duration (i.e., appreciably less than a

minor cycle in duration)

The PRIVILEGED'MODE'TASK directive is to be used sparingly
and only to improve efficiency. While data interlock protec-

tion is irsured with its usage, the ability to insure invisible

transient error recovery has been lessened.




4.3.4.2 Local Override Directive

The Local Override Directive allows Normal Mode tasks
to have direct access to the Global Copies of Compool blocks,
while still using Local Copy declarations. The use of this
directive defeats the protective mechanisms supplied by the
Executive when a Task references a Compool block.

<local copy override directive>::=

LOCAL'COPY 'OVERRIDE

4.4 Executive System

The DAIS Executive isolates the physical aspects of the
DAIS federated system from the Application Software. The
Executive allows the Application Software to reference time,

remote terminals and information in other processors on a

logical level. It masks the federated nature of the system,
so that Application Software can be written as if it were to
execute on a single, virtual machine. Finally, the DAIS

Executive controls and optimizes the use of system-wide re-
sources, such as the data bus and mass memory, and provides

mechanisms for error recovery.

4.4.1 Introduction

The DAIS Executive System consists of the run-time
Executive Software and the pre-run-time Partitioning, Anal-
ysis, and LinkEdit FACility (PALEFAC). This section will
primarily deal with the run-time Executive Software. PALEFAC
is used to generate the necessary executive table information

in order to have a properly functioning run-time mission.
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The DAIS Executive Software consists of two parts: a
Local Executive and a Master Executive. Every processor in
the DAIS federated system contains a Local Executive. On
the other hand, only one Master Executive is in operation
at any given time in any given configuration. The Local

Executive controls operations peculiar to a processor,

including control of the Application Software within the pro-
cessor and local participation in the I/0 processes. The

Master Executive controls system-wide operations, including

control of the data bus, of mass memory, and system-wide

initialization and error recovery.

The architecture of the DAIS system implies a separation

of functional components, the control of one component over
another, and a dependence of one component on another. The
DAIS system architecture is depicted in Figure 7 showing

the separation of hardware and software functions. The
Applicaticns Software is functionally isolated from the hard-
ware by the executive software just as the avionics subsystems
are isolated from the computers by the Remote Terminals and

Data Bus.

DAIS is a real-time system in which the activities of the
Applications Software are coordinated with the passage of
real-time in the outer world. The minimum granularity of
time to which coordination occurs is known as the Minor
] Cycle. It is possible to specify or determine the time of
§ an action within one Minor Cycle, but not to a fraction of
i a Minor Cycle. Thus, the I/0 interactions, interprocessor
interactions, and task interactions may occur, may be known,
and may be controlled within the framework of the Minor Cycle
time granularity. This timing is a requirement for I/0 con-
trol, interprocessor coordination and synchronization, and

the Local Executive process handling.
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There is one case in which a finer time granularity con-
trol may occur with respect to interaction with the outer
world. It is possible to send a sequence of messages to the
outer environment with a timing, relative to each other,
finer than a Minor Cycle. But this sequence itself cannot
be centerd better than a Minor Cycle with respect to the
outer world.

Because of the multi-processing nature of the DAIS sys-
tem, a designated active Master Executive within one pro-
cessor controls the processor configuration. It responds
to data bus transmission errors, and contrcols communication
between data bus terminal units. The Local Executive pro-
vides the interface between the appiication functions and
the Master Executive (Bus Controller) functions. In addition,
there is an interface between the Master Executive and the
application functions with respect to system configuration,

initialization, and recovery.

The Applications Software controls the execution of
software functions by invoking the Executive to schedule and/or

activate processes, events, and I/0.

4.4.1.1 Synchronous Action

Actions performed by the DAIS Executive are divided into
two classes. One class of actions is performed only in re-
sponse to a request from one of the components of the DAIS
system; these are the asynchronous actions. The other class,

synchronous action, is performed periodically.

In order to provide a standard way to specify the periodi-
city of synchronous actions, time is divided into Major Frames
and Minor Cycles. A Major Frame is the longest period of time
which may be specified for a synchronous action; a Minor Cycle
is the shortest. The number of Minor Cycles to a Major Frame
is fixed upon initialization of the DAIS system. This number
is an integral power of 2. Within each Major Frame, Minor

Cycles are numbered starting with 0.
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Synchronous actions include control of the process space
of the DAIS processors, and transmission of data between the
various components of the DAIS system.

4.4.1.2 Asynchronous Actions

Asynchronous actions are performed upon request by a
component of the DAIS system, either software or hardware,
and are performed at or near the time when that request is
made. The majority of asynchronous activities occurring
within the DAIS system do not require the intervention of the
Executive. For instance, setting a variable or calling an
internal procedure is an asynchronous activity which is per-
formed by the processor hardware. In general, when one DAIS
component, either hardware or software, wishes to affect the
data space or process state of another component, it is nec-
essary to invoke an asynchronous action on the part of the
DAIS Executive.

All asynchronous actions have an inherent latency between
the time the request is made and the time the action is per-
formed. This latency depends upon the delays inherent in
communications between hardware components, whether within
a single processor or via the DAIS Multiplexed Data Bus, and
upon the conflicting demands of other asynchronous requests

and synchronous actions.

4.4.2 DAIS Executive Functional Description

The DAIS Executive Software is divided into two major
functions: the Local Executive, and the Master Executive.
In general, the Local Executive controls processes involved
with a single processor, while the Master Executive controls
processes concerned with the functioning of the system as a
whole.
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4.4.2.1 Local Executive

Each of the DAIS processors contains a Local Executive.
This Local Executive controls the state of the real-time
entities existing within its processor, specifically Tasks,
Global Copies, and copies of Events (which, like Compool
Blocks, may exist in multiple copies, one in each processor
in which the Event is referenced).

The Local Executive performs services requested by Tasks
in Real-Time Statements. Since a Real-Time Statement executed
in one processor may affect the state of a real-time entity
in another processor, the Local Executive must be able to send
Asynchronous messages requesting services of other processing
units (e.g., to Schedule a Task or Update a Compool Block).

In addition, the Local Executive must receive such requests

from other processors, and must service them properly.

Unlike Asynchronous processes, Synchronous processes are
basically under the control of the Master Executive since
synchronization is a process involving all processors. How-
ever, the Local Executive must also participate in Synchronous
processes by signalling Minor Cycle Events and preparing for
the reception and transmission of Synchronous Compool Block

Update Messages.

Finally, the Local Executive must be capable of starting
its processor, and of recognizing and processing errors that

may arise.

4.4.2.2 Master Executive

The Master Executive controls communication between the
separate processors and remote terminals of the system. This
communication exists only in the form of messages which can
be sent across the bus. Thus, one major function of the

Master Executive 1is Bus Control.
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Each Remote Terminal or processor can request to send
Asynchronous messages. There are also Synchronous messages
which must always be sent at a given period and phase of a
Major Frame. There are also Critically Timed messages which
are sent at a specified Mission Time. 1In addition, the
Master Executive has its own messages which are used to check
on the correct functioning of the various system components.

The primary function of the Master Executive is to con-
trol the sending of these messages. The secondary function
is to take corrective action when one of these messages is
or appears to be incorrect. The corrective action taken may
be of a very simple type; under carefully controlled condi-
tions the message is resent. If this fails, the error cause
is assumed to be hardware which has ceased to function
properly. Either a logical path around the non-functioning
hardware must be found, or the scope of the mission must
be changed. This is known as System Configuration Manage-
ment. System Configuration Management keeps track of the
status of all processor and Bus-related hardware used during
the mission, and determines the action to be performed when a
hardware element fails.

The Master Executive as discussed above is a set of
functions which exist in one processor. This processor is
called the Master Processor and the BCIU attached to that
processor is called the Master BCIU.

To allow for the possibility that the Master Processor
or the Master BCIU may fail completely, a second Master
Executive exists in another processor. This second Master
Executive is called the Monitor. The Master Executive must
periodically send a message to the Monitor which informs the
Monitor that the Master Executive is still functioning. If
the Monitor does not receive this message, it switches to
Master Executive mode and takes control of the system. This
is called Backup. Recovery exists when the Master Executive
detects that the Monitor is not functioning,
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Backup may also occur on the failure of a remote processor.
If a processor other than the Master or Monitor fails, the
Master may cease operation, thus allowing the Monitor to take
control of the system. An important aspect of Backup is that
the system is now performing a more limited mission. Once
Backup occurs, only certain specified critical functions may
be performed.

Once Backup has occurred, the pilot has an option to
reload the system using fewer than the original number of
processors. This is called Reconfiguration. Reconfigquration
is started by pilot initiation through the Processor Control
Panel (PCP).

A third part of the Master Executive is the Startup/
Loader. The function of the Startup/Loader is to load the
mission software from Mass Memory into all processors within
the system configuration. The Startup/Loader receives con-
trol from a Read Only Memory (ROM) Loader.

The ROM Loader gains control of its processor upon
power up. It examines the bus and, if not active, assumes
control. It then polls all processors in the initial config-
uration to determine a valid load. The ROM Loader then super-
vises the loading of the Master Executive from Mass Memory
into the Master processor, which by default will have the
lowest bus address of all processors. Upon completion of
the loading, the ROM Loader then hands control of the system
to the Startup/Loader.

If, when the ROM Loader comes up, the bus is active, it
goes into an idle loop until one of the following happens:

e commands are received from another ROM Loader

(i.e., load a Master Executive)

e commands are received from the Startup/Loader

(i.e., load this processor as a Remote)

e a predetermined time has passed, in which case
the ROM Loader retries the bus.
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4.4.3 1Interfaces with Real-Time Software

4.4.3.1 General Overview

The DAIS Executive has two principle functions: to pro-
vide services to the Applications Software, and to control
system~wide functions, such as initialization and recovery.
The necessary tasking and I/0 interactions of the Applica-
tions Software form the functional requirements for the
Local Executive Services. The DAIS System Control Proce-
dures form the functional requirements with respect to
system-wide control.

The DAIS Applications Software is composed of Tasks,
Comsubs, Compool blocks, and Events. Tasks and Comsubs
are processing modules, containing executable code and local
data. Compool blocks are data modules used for communica-
tion between separate Tasks, and between Tasks and the
outer world. Events are boolean values used to control the
process state of Tasks. Real-Time Statements and Real-Time
Built-~In Functions are used by Tasks to control and refer-
ence the state of other Tasks and the values of Events and
Compool blocks.

4.4.3.2 Tasks

Tasks are processing modules which can be controlled
and executed independently.

4.4,3.2.1 Task States - In order to understand the inter-
actions of Tasks, it is necessary to understand the possible
"states" that these dynamic processes may have. At any
given instant, each Task in the DAIS Mission Software sys-
tem has one of the states as shown in Figure 8. It

should be noted that not all states are mutually exclusive;
in Figure 8 the tree structure shows a subsetting rela-
tionship with respect to the various states. Thus,
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INACTIVE and ACTIVE are both substates of INVOKED, and hence,
a Task which is INACTIVE (or ACTIVE) is simultaneously also
in the INVOKED State. Similarly, a task which is SUSPENDED
would also be INVOKED, ACTIVE, and DISPATCHABLE.

Figure 8 also indicates the method of transition
from one state to another. For example, a SCHEDULE statement %
will put an UNINVOKED task into an INVOKED state, while a i
CANCEL statement will put an INVOKED task into an UNINVOKED P
state. The meaning of each of these Task states and the
means of transition between them as shown in Figure 9

is now discussed in detail.

4.4.3.2.1.1 1INVOKED/UNINVOKED - Immediately following system
initialization, one Task, the Master Sequencer, is INVOKED
by the Executive, while all other Tasks remain in the UNIN-
VOKED state. Thereafter, Tasks can be put into the INVOKED
state by a SCHEDULE statement or put into the UNINVOKED state
by a CANCEL statement executed within other Tasks. é

4.4.3.2.1.2 ACTIVE/INACTIVE - After a task has been SCHEDULEAd
and thus made INVOKED, it is in the INACTIVE substate; however,
it has the potential to become ACTIVE, depending upon its
Event Condition Set. The Event Condition Set is a collection
of Conditions, each of which may be either "ON" or "OFF".

Each Condition has a "desired" value. When all the conditions
in the Event Condition Set have their desired values, and if
the Task is INACTIVE, the Executive will put it into the
ACTIVE state. It is possible for a Task to have a null Event
Condition Set, in which case it becomes ACTIVE immediately

upon becoming INVOKED.

A Task may return from ACTIVE to INACTIVE state from
either of two causes: because it completes execution, or
because it is forcibly TERMINATEd by another Task. 1In
either case, immediately after it returns to the INACTIVE
state, the Event Condition Set is evaluated. If all of the

69

f"vr' ':f,y,‘ },»: "




i

INVOKED:
INACTIVE

&

Terminate B Y
INVORKED:
ACTIVE:
DISPATCIHABRLY :
READY /

Cancel

/.

Terminate

P

Cancel

Prioricy

/ INVOXED:

ACTIVE:
DISPATOHABLY :

EXECUTTING

— B e

Yriority ~- -
e e L INVOKRED :
ACTIVE:
Priority LISTATCHABLE::
TTTTTT\ SUSPENDED

I

LY
£
) Terminate He
(]
S

R .

/ INVOXLO:
ACTIVE :
WATTING

e 9, Task State Transition Diagram

T . e e i o= . - P
\\




Event Conditions have tneir desired values, then the Task
is immediately put back into the ACTIVE state.

4.4.3.2.1.3 WAITING/DISPATCHABLE - When a Task is ACTIVATEd,
it is also immediately put into the DISPATCHABLE state. 1If,
at any point during its execution, a Task executes a WAIT
Statement, specifying either a desired value for an event or
a time, the Executive will place the Task into a WAITING
state until the condition is satisfied. When this WAIT
condition is satisfied, the Task will become DISPATCHABLE.

4.4.3.2.1.4 READY/SUSPENDED/EXECUTING - All DISPATCHABLE
Tasks are capable of being executed and should theoretically
be executed at any instant within a single DAIS Processor.
Tasks are therefore further ordered by Priority in order to
resolve these possible conflicts. Whenever the Executive
passes control to the Application Software, the highest
Priority DISPATCHABLE Task is selected and executed. Since

it is not in general possible to immediately execute all
DISPATCHABLE Tasks, this state must be further differentiated.
There are three DISPATCHABLE substates. If a Task is ACTIVE
but has not yet been executed, it is said to be READY. 1If it
has been in the process of execution, but has been interrupted
by a higher priority Task, it is said to be SUSPENDED. If it
is executing, it is said to be EXECUTING.

4.4.3.2.2 Task Hierarchy - Any Task may be SCHEDULEd by
exactly one Task, which is then called its Controller.

All of the Tasks SCHEDULEd by a single Task are said to be
its "sons". If a Task has no sons, it is said to have no
"descendents"; otherwise, its "descendents" are sons and all
of the descendents of its sons. The relationships of Con-
troller and son define the Task Hiesrarchy.
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4.4.3.2.3 Priorities - At any time, there may be many pro-
cesses potentially executable within any DAIS processor.
These include Tasks, Executive actions invoked by Tasks with-
in the processor, and Executive actions invoked by remote
terminals or other processors. In order to resolve conflic-
ting demands on the processor, a system of priorities has
been adopted. Tasks are divided into two classes: Normal
Mode Tasks and Privileged Mode Tasks. As a class, Privileged
Mode Tasks and Executive actions have a higher priority than
Normal Mode Tasks. Within each class, conflicting demands

on the CPU are resolved as described below.

4.4.3.2.3.1 Normal Mode Tasks - Normal Mode Tasks are linearly
ordered by priority. At any time, if no Executive actions are
called for and if no Privileged Mode Tasks are Active, the

CPU will execute the highest priority Active Normal Mode Task.

If during the execution of a Normal Mode Task, an Exe -
tive action is called for or if a Privileged Mode Task or a
Normal Mode Task with higher priority becomes Active, the

original Task is immediately placed into a Suspended state.

4.4.3.2.3.2 Privileged Mode Tasks - Privileged Mode Tasks
are not ordered by relative priority; instead, they are
executed on a first come, first served basis. When a Privi-
leged Mode Task becomes Active, it is executed immediately.
Once a Privileged Mode Task is in Executing State, it is in
control of the processor. It can be suspended only when it
invokes an Executive action by means of a Real-Time Statement.
Upon completion of the action, control is returned to the
Task.

Because a Privileged Mode Task cannot be interrupted by
an Executive action requested outside of itself, the Compool
blocks which it references will not be altered during its
execution, unless they are modified by the Data Bus or by
the Task itself. Since only Synchronous Compool Blocks can

e modified directly by the Data Bus, and then only during
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specified Minor Cycles, it is possible to "protect" a Privi-
leged Mode Task against the Data Bus by scheduling it on
Minor Cycles during which the Synchronous Compool Blocks
which it accesses are not accessed by the Data Bus. There-
fore, a Privileged Mode Task is allowed to bypass the pro-
tective mechanisms which a Normal Mode Task must use when
referencing Compcol Blocks.

4.4.3.3 Comsubs

In addition, to Tasks, the DAIS Application Software may
contain processing modules known as Comsubs. A Comsub is

a computational module which may be called by one or more
Tasks and/or Comsubs. A Comsub may communicate with the
outside world only through passed parameters.

F When a Task calls a Comsub, it is considerea to be exe-
cuting within the code of that Comsub. Thus, it is possible
for one Task to be Suspended within the code of a Comsub at

the same time that another Task is Executing within the same
Comsub. In short, Comsubs are re-entrant.

If two Tasks in different processors call the same Comsub,
the Comsub is duplicated in both processors.

4.4.3.4 Compool Blocks

A Compool block may be referenced by Tasks in more than
one processor and also, possibly, by a remote terminal. It
may therefore be necessary to transmit Compool blocks across
the Data Bus. In order to minimize such use of the Data Bus,
each processor which uses the values of a Compool block con-
tains a Global Copy of that block. In addition, any remote
) terminal which sets or uses the Compool block is considered
] to have a Virtual Copy of the block.

Normal Mode Tasks are not allowed to reference the values
within a Global Copy directly. This restriction prevents one

Task from referencing data which has been partially updated

by another Task. However, Privileged Mode Tasks are allowed
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to reference individual values within Global Copies directly,
since they cannot be interrupted by another Task or by an
Executive action. No other processor or remote terminal
is able to set a Global Copy while a Privileged Mode Task

is using it, or to use a Global Copy while a Privileged Mode
Task is setting it.

4.4.3.4.1 Local Copies - A Normal Mode Task is allowed to
reference a Compool block only through the use of a Local
Copy. A Local Copy is a data aggregate internal to the Task
which uses it. A Local Copy has exactly the same length and
internal organization as the Compool Block with which it is

associated. The only interfaces Normal Mode Tasks may have

with Compool Blocks are:

e They may READ the Compool block into their Local
Copy

® They may WRITE from their Local Copy to the Compool
block

e They may TRIGGER the Local Copy
. e They may READ'DEVICE the Local Copy

® They may WRITE'DEVICE the Local Copy.

. READing and WRITEing move the contents of the Local Copy in
! their entirety to and from the Compool block. TRIGGER is a

special statement used only for critically timed Compool
blocks.

Since READ, WRITE and TRIGGER invoke Executive actions
that operate in Privileged Mode, the use of these statements
guarantees that a Normal Mode Task will never reference par-
tially updated data. After it has been RFAD, or before it
has been WRITTEN, the data within a Local Copy may be used
and set indiscriminately, without concern for affecting

the value of the Compool Block.
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4.4.3.4.2 Categories of Compool Blocks - Compool blocks are
divided into three categories: Input, Output, and Intertask.
Input Compool Blocks are used to input data from remote ter-
minals which may then be used by Tasks. Output Compool Blocks
are set by Tasks, and their values are output to remote termi-
nals. Intertask Compool blocks are used for communication
between Tasks.

Since a Compool Block may have multiple Global Copies,
each in a different processor and possibly a Virtual Copy in
a remote terminal, it is necessary to send Compool Update
Message(s) across the Data Bus to maintain consistency between
the various copies. Compool blocks are further classified
as Synchronous, Asynchronous, and Critically Timed.

The various categories of Compool Blocks, and the
ways in which they may be referenced by Tasks, are shown in
Table 7.

4.4.3.4.2.1 Synchronous Compool Blocks - All Global and
Virtual Copies of a Synchronous Compool Block are updated
from a single, authoritative copy, either a Global Copy in
a processor or a Virtual Copy in a remote terminal. The
Update Messages are sent at a specified period and phase.
Note that these Update Messages are sent in a pre-determined
sequence by the Master Executive, and are invisible to the
processor receiving it. Therefore, it is important that
Privileged Mode Tasks which reference Global Copies of the
Compool block do not run during the Minor Cycles when the
Update Messages are being sent, since it is impossible to
guarantee data integrity during these Cycles.

When a Synchronous Compool Block is WRITTEN within a
Task, the data is simply moved from the Local Copy to the
Global Copy within the same processor; the other Global
Copies or Virtual Copy are updated from the Copy periodi-
cally, as described above.
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4.4.3.4.2.2 Asynchronous Compool BLocks - All Global and
Virtual Copies of an Asynchronous Compool Block are updated
when any one of those copies is updated, either by a WRITE

statement or a BROADCAST statement, within a Task, or upon
request by a remote terminal. Note that a processor con-
taining only Tasks which WRITE, but do not READ, an Asyn- ]
chronous Compool Block need not contain a Global Copy of the :
block.

If a Compool block is referenced only by Tasks within a
single processor, the distinction between Synchronous and
Asynchronous is immaterial; however, it is preserved for
the sake of consistency.

4.4.3.4.2.3 Critically Timed Compool Blocks - Critically
Timed Compool Blocks are a special category used only for
OQutput. They are sent to their associated remote terminals
at a time specified in a TRIGGER statement.

More precisely, the data in a Local Copy is sent by a
TRIGGER statement to a Global Copy in the Master Processor,
where it is held until the precise time specified in the
TRIGGER statement, at which time it is sent to the associ-

ated remote terminal.

4.4.3.4.3 Minor Cycle Tag Words - The first word of every
Global'Copy of a Compool block is a Minor Cycle Tag Word,
which indicates the Minor Cycle during which the Global
Copy was last updated. When a Global Copy is updated by
the BCIU, this Tag Word is created by the BCIU. When a
Global Copy is WRITTEN by a Task, the Tag Word is created
by the Executive.

L 4.4.3.5 Events

Events are used for control between tasks and between
a task and the environment. An event has but two possible
values: ON and OFF. Events may often, however, be treated

in two different fashions. That is, a single event may be
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considered to be either a latched event or an unlatched event.
To consider an event as latched is simply to consider its
state as ON or OFF. To consider an event as unlatched is to
consider the pulse, or signal, sent to the event. That is,

to consider whether it is, at a given instant, being set ON
or OFF (equivalently whether it is sent a positive pulse or

a negative pulse). A given event can be considered by one
Task as a latched event while simultaneously be considered

by another Task as an unlatched event.

4.4.3.5.1 Event Types and Usages ~ Table 8 shows the
various types of Events in the DAIS Mission Software system.
It also indicates the statements in which these events may

be referenced within the DAIS Mission Software system. There
are two broad types of events: Explicit Events and Implicit
Events. Explicit Events are named and used by the Applications
Software programmer. They contain the meaning which the pro-
grammer gives them. Implicit Events are associated with some
system meaning and must use the appropriate naming conventions
or mechanisms in order to access this system information.

In particular, Implicit Events are either associated with a
Minor Cycle (via the SCHEDULE statements PHASE=, PERIOD=
clause), a Task state, or the updating of a Compool block.

In Table 8 the usage and meaning of each of these
event types with respect to the Real-~Time statements is
indicated. Often a particular event type may not be meaning-
fully used within some Real-Time statement, and thus it is
prohibited in that usage. While the table segregates the
Explicit Events into latched and unlatched cases, it should
be noted that the Implicit Task state and the Implicit
Compool block events can also be treated in these two fashions,

but not always meaningfully.
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Explicit Events are under the Applications Software pro-
grammer's control. Minor Cycle events are under systems con-
trol and only appear in the SCHEDULE statement via the PHASE-,
PERIOD= clause. Task state events have an associated Task
Activation Event. The Task state event is set ON when the
Task is ACTIVATEd and set OFF when the Task returns to the INAC-
TIVE or UNINVOKED state. The Activation Event associated
with a Task has the same name as the Task. When a Task State
event is used by the INVOKEd function, the information re-
turned is with respect to the INVOKEd state of the task and
not the ACTIVE state.

Compool Block Events are set ON when the Compool Block

is updated, either by a Task or a remote terminal. The
Update Event associated with a Compool block has the same

name as the Compool block.

4.4.3.5.1.1 EVENT - An event name must be declared via an
EVENT declaration if it is used in either a WAIT, SIGNAL

or EREAD statement. If the event name only appears in a
SCHEDULE and/or INVOKED statement, it should not be de-~
clared via an EVENT statement. This usage of the EVENXNT
declaration is strictly followed for the DAIS Mission Soft-

ware.

4.4.3.5.1.2 SCHEDULE -~ All forms of events may appear
within a SCHEDULE statement. The differentiation between
latched and ur.latched occurs through the appropriate use
of the IF (latched) and UPON (unlatched) clauses of the |
SCHEDULE statement. The event names used in these clauses

could be either Explicit event names or the Implicit Task

state or Implicit Compool block event names.

It should be noted that the use of the Implicit Task
statement event in all of the Real-Time Statements is asso-
ciated with the ACTIVE state of the Task. The one exception
is the use of the Real-Time INVOKED function which will test
for the INVOKED state of the Task named.
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It is only in SCHEDULE statements that Minor Cycle
events may occur. However, even here they do not appear
directly, but rather via the use of the PHASE=,PERIOD= clause.

It does not make sense to treat an Implicit Compool block
event as a latched event since it will be ON. Rather, it is

of interest to treat it as unlatched; a pulse is sent when
the Compool block is updated although the state is already ON. %

4.4.3.5.1.3 WAIT - The WAIT statement may be either of latched
or unlatched form and treat either Explicit events,or the
Implicit Task state, or Implicit Compool block events.

4.4.3.5.1.4 SIGNAL - Only Explicit events may be SIGNALled
by the Applications Software. It is prohibited to SIGNAL
any Implicit event. Implicit events reflect the systems
state and are not under direct Applications Software control.

It should be noted that the differentiation between
latched events and unlatched events does not have any meaning
for the SIGNAL statement. By setting the state of an event
to ON, it both r.akes the state ON and is a positive pulse.
Similarly, setting the state of an event to OFF both makes
the state OFF and is a negative pulse.

4.4.3.5.1.5 EREAD - The use of the EREAD function allows
access to the state of an event. EREAD will return the value !
of ON or OFF. Explicit events and Implicit Task state events
may be EREAD.

It should be noted that an EREAD of a Compool block is
meaningless since its value is always ON. '

Since EREAD returns the state of the event, it does not
have meaning with respect to unlatched events.
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4.2.3.5.1.6 INVOKED - An INVOKED function applies only to
Implicit Task state events. It will return the information

as to whether the named Task is INVOKED (i.e., ON) or UNIN-
VOKED (i.e., OFF).

Any INVOKED function does not require an EVENT declara-
tion because it is accessing the TASK state event and not
the Implicit Activation event.

4.2.3.5.2 Event Condition Sets - Associated with each SCHEDULE
statement is its Event Condition Set. Heuristically, when the
set of event conditions is met, the Task will become ACTIVE.
There may be up to 16 different Conditions in an Event Condition
Set, where the time field (PHASE/PERIOD) counts as one Condition.

» Within an <or set> there can be an unlimited number of
events "or"ed together. This arises from the fact that each
of the 16 Conditions of the Event Condition Set is assigned
a single bit in the Task Tables. There are 16 such bits for
each task. This also indicates the problem with the <or set>.
All events of a given <or set> map to the same bit in the
Task Table. Thus, the <or set> expression is not a true "or"
of all of the events "or"ed, together. 1Instead, the .or set>»
is the "last state" change within the <or set> of events,

If the <or set> were:
A or B = ON

then it would be satisfied if either A or B were signalled

ON. However, if both A and B were currently ON, and say B
were signalled OFF, then the <or set> would become unsatisfied
since it reports the last state of any of the events within
its <or set> , B was the last to change, and this change

was to OFF, thus not fulfilling the required condition.
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With these limitations in mind, the state of events and

the fulfillment of an Event Condition Set can be understood
by the following rules.

a. All Conditions are initially OFF when the system is loaded.
Subsequently, they receive values according to the following:

1. When any of the Events associated with a Condition is
signalled ON either by a Task or by the Executive,
the Condition is set ON.

2. When any of the Events associated with a Condition is
signalled OFF, the Condition is set OFF,

3. Unlatched events have a life span with respect to a
given Task. When a Task is SCHEDULE4, all of its
unlatched events are guaranteed to be unfulfilled.
Upon the Task becoming ACTIVE, all unlatched events
are again made to be unfulfilled.

4. While it is SCHEDULEd or while it is ACTIVE, the
unlatched event conditions are being accumulated in
order to fulfill the Event Condition Set. They are
only reset as indicated above.

b. when all the Conditions of a Task which is INVOKED but b
INACTIVE have their desired values, the Task becomes
ACTIVE.

4.4.3.6 Time

The DAIS Application Software may reference time in
three ways: as Mission Time, as Relative Time, or as Cyclic
Time. Mission Time is a count of elapsed Minor Cycles since
system initialization. Relative Time is a count of Minor
Cycles in advance of the point at which the reference to
time is made. Cyclic Time is used to specify synchronous
actions. It is referenced in terms of period and phase.
Period is the number of Minor Cycles between successive oc-

curcences of the action. The maximum specifiable period is
a Major Frame. Phase is the offset of the first occurrence
of the action within a Major Frame from the start of the
Major Frame, measured in terms of Minor Cycles.
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Thus
rhase=3 will occur on Minor Cycles 3, 19,

necessary that Osphasesperiod.

4.4.3.7 Real-Time:Interfaces

, for instance, an action specified as period=lé,

The Local Executive provides the intertace to ecach

the Real-Time constructs. These are the:

e Real-Time Declarations
e eal-Time Built-in Functions
e Real-Time Statements

e Real-Time Directives.

while the first three interfaces provide access

Txocutive routines, the Real-Time Directives

.
Jlrectives

semantics of the other Real-=Time Constructs.

wore added from the baseline desiun in order to

cusion improvement.  Thelr use 1s discourace

Y
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Statement Action
Local Copy Disable
Global Copy Enable
Read Disable
Write Disable
Access Enable
Broadcast Enable
Read Device Disable
Write Device Disable
Trigger Disable
Table 9.
Result of Privileged Mode Directive

4.4.3.7.2 Local Copy Override - The Local Copy Override Directive
allows Normal Mode Tasks to have direct access to the Global Copies
of Compool blocks, while still using Local Copy declarations. The
use of this directive defeats the protective mechanisms supplied

by the Executive when a Task references a Compool block. 1Its

use should be in general forbidden.

4,4.3.8 Master Executive Interfaces

4.4.3,8.1 Startup/Loader - The hardware interfaces for the

Startup/Loader are:

¢ The Mass Memory, from which it reads programs to
be loaded

e The Processor Control Panel (PCP) from which it
reads information to determine which functions
it will perform

e The BCIU. The Startup/Loader will set the BCIU

registers,
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The Software interfaces through the table the Startup/
Loader creates, which contains the address at which to start
processing and the storage protection keys.

These relationships are shown in Figure 10.

4.4.3.,8,2 Master Initialization - Master Initialization re-
ceives control from the Startup/Loader. It initializes
certain Executive Tables in its processor. These Tables are
set to schedule both the Master Sequencer and a task to per-
form CPU hardware tests. These relationships are shown in
Figure 11.

4.4.3.8.3 Bus Ccntrol Interfaces -~ Bus Control is the part
of the Master Executive which controls sending messages over

the DAIS Bus. Figure 12 shows the interfaces of the various
par-s of the Bus control (shown in the double line boxes) with

the rest of the system. Each of the elements is discussed
below,

a. Bus Controller - This function sets the BCIU registers
for sending the Bus messages.

b. Critically Timed Message Processing - Critically Timed
Message Processing receives messages from either the
Local Executive or Error Processing. 1t also processes
the Master Executive Minor Cycle event. It sets Timer A
to interrupt at the proper mission time to send this

message. When Timer A interrupts, Critically Time Message

Processing checks the type of message at the top of its
gueue. If this message is a normal type, that is, a cri-
tically timed message scheduled by the Local Executive,
the Bus Controller is called to send the Message. If
the Message at the top of the gqueue is the Master Execu-
tive Minor Cycle Event, then the Minor Cycle Check func-
tion will be called.

86




- SOFTWARE L
. .- c ‘)
Note: Double arrows
indicate
created by
Startup/Loaderf

|
|

W

MASS
MEMORY
STARTUR/
LOADER .
Startup

BCIU System
i
‘ Status
| Informa-
‘ tion
\ ) -
I A4 |
| LOADED ) 3
| .
|
|
i
[
‘
i

Figure 10. Startup/Loader Interfaces

87

i e e, oy~ gy,
" A oy i FCAEL e cua o 2o
v -

L aandhy . . 4 . i IS RIS -~/ I Yok P




§20BFIIUI UOTIRZTTRTITUI I23ISTH ‘11 ®anbrl - q

FYVMII0S
SNOILIYOITdaV

A

‘3
B
a78VYL MSVI mw
FATINDIXT 3 b
: T

WIO0ud T¥201

IS3L H m
SYVYMQUYH ‘
{
- AATINOZXI _|am||||||||JZOHa¢NanHaHsznn [ 2aavo1

T¥201 : CYILSYW - /3anIuvLs

S
| ——— e o




-

T0313u0) sng

21 oanbt1y

wrnp‘

dxeMpIRH

3dnzzajur

Xd01g buyssosoxd

1013u00 sng
IPTSINO auynoyY

%5018 butrssasoxd
T0x3u0) sng

Fuawabruek .
uoj3vInbyzucd : '
wo384&s nxroe8 .
1 . \
4 y .
buyssoadoxyd bu .mmuoou.m
‘ e’ o XSTIOIIUOY &I et ¥
02X u 9 n snouoxyouis :
! | | :
" nrog
x0350A 3ssnboy
snouoxyoulsy bugssasoag 22038
snouoxyouksy 21940
ZOUTH
4
[\ y
I0SS9201&
X93SPH UF ¥daUd
BATINOIXT e S CLO IR B S mw.nndum
TRO0T JOUTRH
—1 - 0 e o J—
pesedyTdng | ' —em—mmmm———
- ° oﬁow | Z9TTOIIU0D
pourt H sng |
A11e07137120 \ :
r - ) En e Y R o ‘L
¥ asuyl

89




P .

SIS

c e m— e

o —— e

i WX W

Minor Cycle Check - Minor Cycle Check is invoked by

a BCIU Halt, by calls from the System Startup (as

part of the starting sequence), or by Critically Timed
Message Processing.

During system initialization, Master Function
Mode Command generation does not start until the Master
Sequencer has performed its initialization. During
normal operation, Master Function Mode Commands must
wait for a BCIU Halt (the end of the previous cycle's
synchronous bus list processing), and an indication
from Critically Timed Message Processing (indicating
it is time for a new Minor Cycle). If a Minor Cycle
should start, the Bus Controllef is called to send
Master Function Mode Commands to all Remote Proces-
sors and then transfer control to the Master Proces-
sor's Local Executive to start a Minor Cycle.

Minor Cycle Start - After the Local Executive in the
Master Processor has done its Minor Cycle Processing,
it calls Minor Cycle Start. Minor Cycle Start then
waits until all other processors have received the
Master Function Mode Command then starts Synchronous
Processing. It returns control to the Local Executive.

Synchronous Processing - the Synchronous Instruction
List (SIL) is obtained for this Minor Cycle. Then
control is passed to the Bus Controller to be started.
When Synchronous Processing is complete, the SIL Done
Event is set ON.

Asynchronous Processing - Asynchronous Processing re-
ceives Asynchronous Request Vectors either from the
Local Executive in the Master Processor or from BCIU
interrupts. The message to be sent is found and sent
by the Bus Controller. Asynchronous Processing may
also invoke the Local Executive for an Asynchronous
Message received or transmitted so that the Local
Executive may perform the necessary processing.
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g. Error Processing - Error Processing is always invoked
by a BCIU generated Interrupt. Examination of the
BCIU registers will indicate the cause of the error
and indicate the action to be performed. A Bus error
may indicate that a System Component has failed. 1If
so, System Configuration Management will be called to
handle the problem.

h. Bus Control in Remote Processors - Figure 13 shows
the relation of Bus control to the other processors.
The BCIU acts as the extension of the Master Executive.
The Local Executive sets the Status Code Register when
it wishes to send an Asynchronous Message. When the
message has been sent, the Local Executive will be
interrupted. A similar interrupt occurs when an
Asynchronous Message is received. A different inter-
rupt occurs to denote the Master Function Mode Com-
mand, which signifies the start of a new Minor Cycle.

4.4.3.8.4 Monitor/Backup Interfaces - Monitor/Backup is
that software which resides in the Monitor Processor in order
to determine when to assume control.

The Monitor/Backup interfaces with the Master Executive
through messages received across the DAIS Bus. Figure 14
shows this inter-relationship.

The Monitor is waiting for the Master to fail. The
Master Executive has to send the Monitor a message that it
has not failed, otherwise, the Monitor will take control
of the DAIS System. The Monitor may also be invoked by the
applications software. This Backup action is initiated if
the applications code detects an error and wishes to force a
Monitor takeover. 1In addition, any permanent hardware errors
detected by the System Configuration Management must also be
sent to the Monitor.
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4.4.3.8.5 System Configuration Management Interfaces -
System Configuration Management interfaces with:

a. The Bus Control to detect permanent device failures and
take corrective action.

b. The Monitor .to inform it of permanent device errors.

c. The Local Executive, which gencrates error indications
for Local Executive detected conditions.

d. The Master Sequencer, in order to initialize or reini-
tialize Applications Software.

e. The Applications Software, when a permanent device fail-
ure within an RT is detected by Bus Control, System
Configuration Management informs the Applications
Software of this fact.

Figure 15 shows che System Configuration Management
interface relationships. If the Applications Software no
longer wishes to receive messages from certain RT subaddresses,
it informs the Subsystem Status Monitor. Usually, this
means the Applications Software has detected a failure within
the remote terminal subaddress and no longer wants that data.
Applications Software may also detect an unrecoverable condi-
tion and inform System Configuration Management of this con-
dition. 1In this case, System Configuration Management will
either restart the Master Sequencer or invoke Monitor/Backup.

4.4.3.8.6 Reconfiguration Interfaces - Reconfiguration
receives its control from two separate inputs:

e The System Configuration Management Indication
that at least one active processor has failed.

e Data from the PCP.

Reconfiguration processing controls the loading and initi-
alization of the new configuration, and is initiated upon

pilot request.
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4.4.3.8.7 Mass Memory Control Interfaces - Mass Memory

¢ control Interfaces with:

e The Bus Control to manage the bus protocol of
interrupts.

e The Local Executive to receive indications of
requested data transfers.

e The System Loader to load all active processors
within a configuration from mass memory.

Figure 16 shows the interface relationships. No
request of Mass Memory Control may exceed the thirty-one word
limit which is imposed by the MIL-STD 1553A bus protocol
and DAIS asynchronous protoco{.

System
Loader : .
Bus Mass Memor . " Local
Control Y ca
S>> Control > Executive
Figure 1l6. Mass
Mass Memory Control Memoxy
Interfaces
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4.4.4 Hardware Interfaces

The Executive Software must interface with particular
pieces of hardware. 1In the DAIS system, these consist of:

e DAIS Multiplex Data Bus

e Remote Terminals

® Bus Control Interface Unit
® DAIS Processor: AN/AYK-15
® Mass Memory

® Processor Control Panel

® Advisory Caution Lights

4.4.5 Interface to PALEFAC

The DAIS Executive must interface with two elements of
non-Real-Time software, PALEFAC and the Language Translators.

PALEFAC provides the Executive Tables which are the

primary data base of the DAIS Executive. These tables include:

¢ The Tasking Tables, which describe the states and
inter~relations of Tasks and Events.

¢ The Compool Area, which contains the Global
Copies of Compool Blocks.

¢ The Data Descriptor Blocks, which describe
the Compool blocks.

e The I/0 Tables, which control Synchronous and
Asynchronous Data Bus traffic.

The PALEFAC-produced Executive Tables are described in
detail in the PALEFAC Pre-Processor/PALEFAC-Mission Software
Interface Control Document. The tables generated are speci-
fied in the detail design of the Executive Software (Local
Executive and Master Executive) requirements.
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4.5 Applications Software

The DAIS Applications Software requirements for the
OFP are derived from existing aircraft implementations but
contain some significant differences reflecting the innovative
controls and displays that DAIS is designed to implement.

The software structuring of the DAIS Operational Flight

Program differs from that of most existing fleet aircraft for
a number of reasons. First, the top-down structuring of the

DAIS OFP supports a structure for future functional expansion
with minimal cost impact. Secondly, the structure of the

DAIS OFP allows for easy transferral of the software to any
machine that supports J73/1. Thirdly, the DAIS OFP had been
coded to exploit the facilities and capabilities of the DAIS

Executive system as presented by the DAIS Real-Time Interface.

An overview of the major functions of the DAIS Applica-
tions Software will be presented. The interfaces to flight
H hardware and to the DAIS Executive software are delineated,
and the interaction between the elements of the applications

software is described.

4.5.1 Equipment Interface

The DAIS Applications Software is designed to interface
to sensor, pilot control, display and mass memory unit hard-
ware. Table 10 delineates the Mission a Configquration and
shows the various equipments that required interfacing

4.5.2 Software Interface

s The DAIS Applications Software executes in an environ-
ment maintained by the DAIS Executive software. The Execu-
tive provides real-time task control, data base management,
interprocessor communication, remote terminal communication
and mass memory services. The Mission Software is designed

to minimize the complexity of these operations to the Appli-
cations programmer. A description of the applications/
executive interface from a programming standpoint is contained
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TABLE 10. MISSION a CONFIGURATION

Weather: Night - Clear (Visual Flight
: Rules [VFR])

Target: Fixed Ground Target

Weapons: MK-82 LDGP Bombs

Threats: None

Simulated

Sensors: INS (SKN2416)

Laser Ranger

Air Data Sensors

Radar Altimeter (APN-141)
ILS (ARN=-58A)

TACAN (ARN-118)

Core Element

(Hardware) : DAIS Processors (2):
Master & Remote #1
BCIUs (2)
RTs (2)
Controls and Displays
RT (1) C&D Mass Memory
VSD SCU
HSD HUD
MPD-1 PCP
MPD-2 MPDG (1)
IMFK DSMU
DEK AP
MMP
Support Facility: Integrated Test Bed
Functions: Navigation - Inertial/Baro-
Damped
Steering - Command NAV
TACAN
ILS
Navigation Update - Flyover
HUD/Laser
Ranger L
FLIR/Laser
Ranger
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TABLE 10. MISSION o CONFIGURATION (con't.)

Acquisition/Cueing - Pilot/HUD
Pilot/FLIR

Target (or OAP) Fix -
HUD/Laser Ranger
FLIR/Laser Ranger

Weapon Delivery - CCIP/Auto
CCIP/Manual

Stores Management
Communications - UHF

Checklist

e
ekl (e s
> Y AP P N
a8 ST TV
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in the DAIS Software Standards and was presented in Section
4.3 The fact that a multiple-processor operation exists is
entirely transparent to the programmer on the software module
level. The parcitioning of the software into multiple pro-
cessors is accomplished by the use of the PALEFAC facility.

4.5.3 Applications Software Architecture

The DAIS Applications Software is structured as a fixed
invocation tree. The software elements in this tree are of
four types:

e System Control Modules - These tasks are responsi-
ble for the control and initialization of the
rest of the applications software tasks.

e Specialist Functions (SPECs) - These modules
accomplish specific computational tasks associated
with one of the functions of navigation, guidance,
weapon delivery or stores management.

e Display Functions (DISPs) - These processors con-
trol the operation of the cockpit displays.

e Equipment Processors (EQUIPs) - These tasks inter-
face with the DAIS sensors and controls.

4.5.3.1 System Control Modules

System Control Modules control and initialize the
applications tasks as follows:

e The top task in the DAIS Applications invocation
tree is the Master Sequencer. This task schedules
the Configurator, the IMFK/MFK and MMP Request
Processors, and the Master Mode Panel {(MMP) lights.

e Configurator - Controls the operations of the
applications programs (SPECs, DISPs, EQUIPS).
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e Request Processor - Interprets pilot inputs from
the panels, specifically the Master Mode Processor
(MMP) , Integrated MultiFunction Keyboard (IMFK),
and MultiFunction Keyboard (MFK).

e Subsystem Status Monitor - Keeps track of the
status of the avionics subsystems (i.e., equip-
ment) .

e IMFK Handler - Services inputs from menu keys
on the IMFK panel.

® MFK Handler - Services inputs from menu keys
on the MFK panel.

4.5.3.2 Specialist Functions (SPECs)

A SPEC is a task that carries out supporting computa-
tional functions associated with a master mode. The differ~
ent SPECs and their definitions are as follows:

e Navigation Computation SPEC ~ responsible for
keeping track of the aircraft navigation
state (latitude, longitude, wander angle,
altitude, attitude, wind, and velocities),
utilizing information from the Inertial Navi-
gation System (INS), the Air Data Computational
SPEC and the various fixes.

e Air Data Computational SPEC - generates baro-
metric altitude, True Air Speed, calibrated Mach
Number, and static temperature for other compu-~
tation SPECs and/or displays utilizing informa-
tion from the air data sensors.

® Guidance Computational SPEC - provides steering
cue data for the displays; in particular, it
positions the flight director to facilitate
steering to waypoints, to a heading, or alti-
tude and during ILS landing.
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® Stores Management SPEC - includes stores setup,
stores inventory maintenance, and weapon release
processing.

® Weapon Delivery SPEC - performs all processing
required for the execution of the Weapon Delivery
mode selected by the pilot, including algorithmic
execution, control of sensors and management of

displays.

4.5.3.3 Equipment Processes (EQUIPs)

EQUIPs are tasks that interface with the DAIS sensors
and controls. Each piece of equipment is communicated with
by one or more input EQUIPs (from the equipment to the soft-
ware) and/or one or more output EQUIPs (from the software

to the egquipment).

EQUIPs were introduced into the DAIS software structure
in order to separate the details of communication with equip-
ment from the algorithmic and logical functions performed
by the software. That is, if the details (formats) of an
equipment change, but its function remains the same, then
only the EQUIP software need be modified.

Input EQUIPs receive messages from the external equip-
ment via a remote terminal. These messages are then converted
to internal form. Output EQUIPs read the output from other
processing modules, format the output for the equipment, and
output the data to the external equipment via a remote termi-
nal. The equipments for which EQUIPs have been isolated

include:

e Inertial Navigation System (INS)
e Laser Ranger

® Instrument Landing System (ILS)
o TACAN

® UHF

¢ Pave Penny

® VATS/Pave Tack
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o Radar Altimeter

e Air Data

¢ Engine, Fuel, Flaps and Speed Brake Status Systems
e Station Logic Unit (SLU) and Weapon Stations

¢ Armament Panel

® Data Entry Keyboard

® Sensor Control Unit

4.5.3.4 Display Processes (DISPs)

DISPs are tasks that control the cockpit displays. More
complex displays, Head Up Display (HUD), Vertical Situation

Display (VsSD), Horizontal Situation Display (HSD), MultiPurpose
Display (MPD), are generated by the Modular Programmable Dis-

play Generator (MPDG). A DISP receives input from various
mission tasks, formats messages to control the display and
outputs them to the MPDG or the display device through the

remote terminals.
The equipment for which DISPs exist are:

e Integrated MultiFunction Keyboard (IMFK)
e Master Mode Panel (MMP)

eMultiFunction Keyboard (MFK)

® Sensor Control Unit (SCU) lights
®MultiProgrammable Display Generator (MPDG) ;
e Moving Map Device (MMD)

4.5.4 Software Interactions

This section presents examples of the DAIS Software's
interactions between the elements introduced above in Section
4.5.3.

4.5.4.1 IMFK/MFK -~ Pilot Interface

Most pilot-initiated functions, except those on the
highest level, are activated through the IMFK. Each OPS and each
Brute Force SPEC have one or more associated IMFK pages,
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each of which has up to ten items. By pressing the key asso-
ciated with one of the items on an IMFK page, the pilot may
activate a software functionm.

There are three types of IMFK pages: Checklist pages,
Tailored pages, and Brute Force pages. MFK pages are Brute
Force pages.

a. Checklist Pages - This type allows a pilot to complete
a checklist via the IMFK. Each checklist consists of one
or more checklist page(s). There are two types of check- i
list pages: those on which every key must be pressed,
and those which allow advancement to the next page by

pressing key 10. Items on these pages are of four types:

1. Check items - The pilot checks the status of some
piece of equipment and presses the key indicating
he checked the item,

2, Data entry items - Each of these items allows the
pilot to change the values of one or more mission
data variables by entering new values through the
Data Entry Keyboard (DEK).

3. Action Items ~ These items start or stop various
functions or equipment.

4. Advance page items - These items cause the check-

list to advance to the next page.

Checklists occur during the preflight, cruise, approcach
and landing, precision approach, and de-arming phases and

may also be called up through the Checklist Brute Force
SPEC.

b. Tailored Pages - There is one tailored pages associated
with each master mode except Preflight. Each of these
pages allows the pilot to choose several functions rele-
vant to the associated master mode. A tailored page
remains on the IMFK throughout most of the master mode,
and its items can be chosen at any time. 1Items on these
pages are either data items or action items.
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c. Brute Force Pages - Several Brute Force pages are asso-
ciated with each Brute Force SPEC. Each group of pages
is part of a tree structure. The highest level page
of a group is displayed. An item chosen on this page
will either cause a function to be carried out, or will
cause a next (2nd) level page to be displayed. An item
chosen on a 2nd level page will either cause a function to
be carried out or a 3rd level page to be displayed. All

items on 3rd level pages will cause functions to be car-
ried out. Thus, as many as four keys may have to be
pressed to invoke a function.

Figure 17 shows the interactions of an IMFK/MFK handler
task with the Request Processor, the DEK EQUIP, and the IMFK
DISPs and the MFK DISPs. The following sequence of interac-
tions occurs.

The Controller (any OPS or Brute Force SPEC) activates
the IMFK/MFK Page DISPs to display a new IMFK/MFK page.

When an IMFK/MFX menu key is pressed by the pilot,
the Request Processor activates the IMFK/MFK Handler
and passes it the number of the side key. Depending
on the type of item, one of the following sequences
is carried out by the IMFK/MFK Handler.

. e Check Item - The IMFK/MFK Handler places a
'checkmark' next to the item to mark the item

-

as completed.
e Data Entry Item -

~ The IMFK or MFK Lights DISP is activated to
backlight the appropriate key.

- The DEK is activated.

~ Input data from the DEK EQUIP is awaited.
1f the pilot decides not to enter any data,
he must at least press the DEK ENTER key.

- The pilot's input data is sent from the
DEK EQUIP to the IMFKX/MFK Handler.
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- The DEK is deactivated.
‘ - If input data were received, various SPECs
3 DISPs, and EQUIPs that use the data may
be activated and sent the value, and the
the new value is displayed as part of
the IMFK item.
- The IMFK or MFK Lights DISP is activated |
to turn off the side key light. é

e Action Item - One or more SPECs, DISPs, EQUIPs,
or subtasks are activated to carry out the
desired Function. g

e Advance Page Item - When a checklist page is
complete or a brute force item is pressed, the
IMFK or MFK Page DISP is activated to display
the new page.

4.5.4.2 Navigation Interfaces

The Navigation function receives inputs from the naviga-
tion sensor EQUIPs and outputs a set of data (the Navigation
State) to the DISPs, Weapon Delivery and Guidance functions.

Navigation data is typically expressed with respect to
. two coordinate frames. The locai-level frame is defined as
! having its origin at the position of the aircraft, with the
axes located in the plane tangent to the earth's surface and
orthogonal to each other, with the z-axis directed away from
the earth, orthogonal to the tangent plane. The Body (or
Aircraft) frame is defined as having the y-axis point out
the nose of the aircraft, x-axis out the right wing, and the
z-axis orthogonal to the x and y forming a right-handed car- f

tesian coordinate system. While these coordinate frame def-

initions are not standardized across the avialable sensors
and software systems currently in use, it has been decided
to make the coordinate definitions above standard to DAIS 1




and to convert all sensor input to these standard frames of

: reference, and to design all subsystems interfacing with the
; Navigation SPEC to these coordinate frame definitions. !

4.5.4,3 Normal Attack Interactions

In order to accomplish the Normal Attack sequence, many
] elements of software must interact in a controlled manner.

The purpose of this section is to indicate interactions, rather
than to describe the algorithmic processing of the Normal
Attack Controller. The elements conceptually interact as
follows:

e Upon depression of the CCIP/AUTO MMP key, the Config-
urator will schedule and activate the Weapon Delivery
OPS. This is a generic OPS under which one of many
possible bombing modes may be controlled. 1In this
example, the Weapon Delivery OPS activates the Normal
Attack Controller.

e The Normal Attack Controller (NAC) is responsible for
controlling the sequencing and algorithmic calculations
involved in this mode of Weapon Delivery.

® NAC also sends data to the MPDG DISP so that the
required graphic and numeric data can be displayed.

e The SCU mode (i.e., LSR) is sent to the SCU Lights
DISP and the SCU Bullpup Controller EQUIP is activated.
Information from this EQUIP is used to drive the
Aiming Reticle as well as the LSR.

e The Designate Button EQUIP causes NAC to switch
from target acquisition to weapon delivery. This
implies that the FLR RANGE EQUIP must be used to 1
read the target range so that solution cues can

be generated.
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e Alternate targets, or a refined target position,
may be obtained by using the bullpup controller to
move the AR and FLR. Depression of the Designate
button causes a reinitialization of the Weapon
Delivery processing.

e The SLU EQUIP is activated only when the calculated
time-to-go is less than a preset value, the master
arm is set, and the Armament Release Button (ARB)
is depressed. The event EARB or a Boolean tag is
set by the Armament Release Button EQUIP.

4.5.4.4 Interactions of Input EQUIP Functions

This section describes the generic interactions between
an input EQUIP function (EQUIP), the I/0 Compool data (IN),
the task using the sensor data (TASK), the Subsystem Status
Monitor (8SSM), the Configurator, and the display functions
associated with the equipment status (DISP). .

The Configurator schedules TASK, EQUIP and the DISP
according to the system configuration requirements., The
basic function of the EQUIP is to read sensor data, reformat
it and place it in the compool. TASK and DISP use reformatted

sensor data as required.

An auxiliary function of EQUIP is to perform equipment
dependent limit checks on the sensor input data. If a data
element is out-of-range, an error message is formulated and
sent to the Subsystem Status Monitor (SSSM). It is the
function of SSSM to count error messages, gather statistics,
and determine when an equipment is to be daclared failed.
The input EQUIP signals each potential error. It does not
remember error statistics. All error history is maintained
by the SSSM.
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SECTION V.
DEVELOPING A MISSION

The process of implementing a specific avionics mission
using the DAIS methodology and tools requires both the
development of the software and the simulation and testing
of the software. Both of these aspects will be discussed
below and will be shown to be an outgrowth of the actual
DAIS Mission Software design and standards.

Having discussed the details of the DAIS Executive inter-
face to the Applications Software in Section 4.0, a careful
consideration of how one would like to develop avionics soft-
ware should be taken. An OFP could be broken down into numer-
ous functional structures. A reasonable breakdown could con-
sist of two major parts; one part the Executive Software and
the other part the Applications Software. In this functional
breakdown the Executive Software can be thought of as that
software resident within the processors that is mission invar-
iant. The Applications Software is that which could change
from mission to mission, i.e., a close air support mission
versus an air superiority mission, or from aircraft to air-
craft, i.e., dependent on the sensors and subsystems.

If it is accepted that the Executive Software is oper-
ationally mission independent, then to develop a new OFP
should consist of writing Applications Software according to
the mission specifications, describing the eguipment suite
I1/0 interface, and describing the computer network. A pic-
torial representation of this method is shown in Figure 18.
The specification of synchronous 1/0 in the figure is a
reasonable and convenient way to provide global information.
Since DAIS is based upon the concept of a federated computer
systems, partitioning of global information is also required.
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Considered from this point of view, there are various

characteristics that would be desirable for Mission Software

to have in addition to processor invariance and an automatic

solution to potential data conflicts. A list of such goals

for Applications Software would include:

eInvariance with respect to processor and I/0 control

eInvariance with respect to executive implementation

eInvariance with respect to partitioning across

processors

eInvariance with respect to network

sAutomatic Multiprocess Synchronization for:
- Date Conflicts
- 1/0
- Interprocessor Communications.

If it were possible to achieve these goals, then it would
also be possible to initially develop and debug Applications

Software on a large host computer system with confidence.

In addition, the Applications Programmer would be able to

develop his programs as if he were writing for a single virtual

machine. While choosing a set of executive primitives the

way DAIS has done does not ensure that these goals can be
achieved, the methodology at least facilitates and indeed

encourages such goals,

Figure 18 is accurate for the DAIS system, and the
implementation of the DAIS executive has been such that the

goals for Applications Software have been accomplished. 1In
DAIS, Applications Software can be developed independent of

the target processor, I/0 control characteristics, the details
of the executive, and indeed of the final partitioning across
processors of the federated system. In addition, the imple~
mentation chosen for the Executive is such that Data Conflicts,
1/0, and Interprocessor Communications are automatically handled
without intervention of the Applications Programmer.
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5.1 Mission Development

In the above discussion on how to develop a specific
avionic mission, goals for the resultant Applications Software
were given. Within the context of the current DAIS Executive
implementations Figure 19 presents the steps and the method

for generating an OFP for use with the DAIS Executive system,

The actual development of Application Software can now
be seen in more detail. One Compool, named DAISMS contains
the effective software standards. It includes the DEFINE
interfaces to the various executive primitives and contains
the necessary global information required to make the appropri-
ate definitions and the interfaces to allow the user defined
Comsubs to properly function. The Application Compools contain
the user defined Compool data blocks for a given mission.

The development of the executive software is similar.
These routines must also be compiled with the DAISMS Compool and
their own appropriate Compools. However, once the executives
are developed, they are not continually recompiled but rather
the appropriate relative files are waiting to be linked.
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The complexity of the required PALEFAC processing is now
seen. Not only must the synchronous I/0O and Partitioning in-
formation be provided, but information about both Comsubs and
Tasks are required. The gquestion regarding Task information
is complex. Minimally, it is necessary to obtain the SCHEDULE
statement information in order to generate the Executive Task
Tables. It is also necessary to know about the LOCAL'COPY
declarations in order to both allocate data space, and in
order to generate appropriate interprocessor data transfers
for Compool blocks (if the partitioning information so indi-
cates). Similarly, knowledge of EVENT, CANCEL, and TERMINATE
is required. In order to accomplish this analysis, there is
a tool called the PALEFAC PRE-PROCESSOR that reads an Applica-
tion Software routine and gleans the appropriate Executive
Primitives. The information is stored in a compact manner

on one file.

Figure 19
Building DAIS Mission Software
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The detailed sequence of steps required for building an

avionics mission is as follows:

1.

PAF Construction - Once the Comsubs have been implemented
and the Compool blocks have been layed out, the PALEFAC
Auxilliary File (PAF) is constructed. The PAF declares
the size of all the Compool blocks, and the local storage
area needed by each Comsub. The detailed syntax of this
file is given in the PALEFAC User's Guide.

Running the PALEFAC Pre-processor - The PALEFAC Pre-pro-
cessor should be run when all applications modules have
been coded and successfully compiled for the target
machine. The pre-processor will produce the PALEFAC
Module Input (PMI) file, which is an additional input to
PALEFAC. The content of the file is a condensed version
of all applications tasks.

Compiling Applications Source Code - All applications code
should be translated using the JOVIAL J73/I compiler which
is resident on the DECsystem-10 at AFAL. The mechanism
used for compilation is described in the JOVIAL J73/1 pro-
grammers Reference Manual.

Running PALEFAC - PALEFAC examines the PMI file produced
by the PALEFAC Pre-processor, and the contents of the PAF
and the PALEFAC Global Input file (PGI). The PGI file
contains information which is global to the entire con-
figuration, such as partitioning information and I/0
control information. The output of PALEFAC is the PALEFAC
Mission Database (PMD) and the PALEFAC Partitioning Infor-
mation (PPI). The PMD files contain all the information
required by the executive for this configuration. The

PPI files are link directives for this configuration.

The Executive - From the applications point of view the
executive is already prepared for this configuration.

The DAIS Systems Engineer need only include the reloca-
table files for the executive in the PALEFAC partitioning
section of the PGI to have them configured in the load.
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6. Linking - The linker for the desired target machine is
invoked, provided with the PPI files as input. Exact
details for the operation should be taken from the
Link-10 Programmer's Reference Manual, or the LINKS
Part II Specification.

5.2 Simulations and Testing

The development of the DAIS Mission Software required
the developient of various software simulation and testing
tools in addition to the STS and ITB. 1Initially, the
STS/ITB were not available, and the restrictive access and
debug capability emphasized the usefulness of a host computer
for simulation and testing.

5.2.1 Simulation Capabilities

One of the fallouts of the development of the DAIS
Executive from the Application Programmer's point of view
was with respect to the ability to test the Application
Software in a convenient and efficient manner. Often in the
development of real-time software, and avionics software in
particular, there is but one unique hardware facility avail-
able; the target processor. In addition, projects often have
the hardware system under parallel development along with the
OFP software. Not only do these hardware facilities have
extremely limited tools available to the programmer, but
access is limited to one user at a time. The hardware per-
sonnel also have priority over software development. In
such circumstances, software personnel loose time and produc-
tivity. When the system does become available it has the
characteristics of a unique system with respect to setup,
initialization and tool usage: the programmer must learn
yet another system.

One of the benefits of using a HOL is that the programs
written with the HOL are no longer tied to a given computer
bur rather are portable. It becomes possible to write and
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test routines on another computer, e.g., a large host compu-
ter, thus avoiding the problems of availability and training
on a unique small system. However, real-time programming also
involves the interaction of real-time processes, events,

and time itself. There is seldom a convenient way to "model”
the execution of the target computer on a large host, nor is
there usually time or money to generate a viable simulator.

The availa._ility of a set of real-time interface primi-

tives alters this situation, by predicating what the executive
interface must be, and thus making the Application Software

invariant, not only with respect to the processor but also with
respect to executive implementation. Further, if the process
control for the executive is itsgself written in a HOL, then this
executive has itself achieved portability. When the executive
is written in a HOL, it becomes extremely simple to have a simu-
lation capability on a host computer, assuming an appropriate
code generator exists.

In the modern world of sophisticated flight processors,
the ability to make effective use of an Interpretive Computer
Simulator (ICS) has lessened. The execution time for the
simulated computer versus the host computer is often several
thousard to one. Thus, to simulate one second of target
computer time could take over one thousand seconds: an unten-
able condition for real-time program development.

An alternative to this situation would be to use a State-
ment Level Simulator (SLS). This concept is based upon the
following factors:

e The Program is being written in the specified HOL -
The actual machine code is not being tested, but
rather only the HOL implementation.

e The HOL has a Real-Time Executive Interface - This
allows for a method of Application Software invariance
with respect to executive implementation.
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e A Host and Target Computer situation exists - There
is available a convenient large host computer system
but a relatively inaccessible target computer for
software development.

In this context, it is possible to treat the HOL state-
ment as the basic computation step and to calculate the amount
of time it would require on the target computer. 1If code is
now generated for the HOL program on the host computer, and
after each statement the "Target Computer Statement Time" is
added to a pseudo-clock, then the program can be executed on
the host computer yielding the target computer timings and
displaying the correct real-time interactions for simulation
purposes. Thus a simulation facility can be provided which
is of the order of two to one real time.

In order to implement the timing characteristics in the
above scheme, compiler cooperation is necessary. HAL/S imple-
mented such a mode of operation, named FSIM, and is currently
in use in the development of the Space Shuttle OFP. JOVIAL
J73/1 has also an SLS mode, but this was not operationally
available during the development of the current DAIS Mission
Software.

In lieu of such a simulation capability, a Module Based
Simulator (MBS) approach was used with great success.
This mode of simulation is identical to be the SLS concept
except the statement timings are unavailable. Thus the
MBS runs as if it had an infinitely fast CPU available.
Tasks run until they either complete or are waiting for 1/0,
events, or time.

Use of the MBS allowed DAIS Mission Software to be developed
and functioning on the host computer system, the DECsystem-10,
months before the availability of the actual flight computers,
the AN/AYK-15. The usefulness of the method can
be illustrated by the fact that the DAIS weapon delivery soft-
ware was solely developed and tested in the DECsystem-10 and
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then moved to the AN/AYK-15s. This was successfully accom-
plished in less time than two hours even though it involved
a 10,000 word program.

The important fact to emphasize however, is that the
MBS is inherently present under the design methodology used
by the DAIS Executive. The executive primitives themselves

form a simulation control language. Using the HOL and the
Process Control Statements, it is possible to obtain complete
controlef the (pseudo) real-time interactions for tracing,
dumping, analysis, and other simulation interactions. An
additional advantage is that the Applications Programmer is

already familiar with the simulation control language: it

is the same language in which he has been programming. An

MBS allows for the (pseudo) real-time development and testing
of OFPs on a host computer independent of the actual flight
systems. By the time the Mission Software is to be transferred
to the target machine, logical, algorithmic, data, and real-
time interactions should have been debugged and the program
considered correct. What is left upon transfer to the target
computer is to verify low level interfaces, system saturation
characteristics, and actual system performance.

5.2.2 Simulation Method

Development of OFPs in Higher Order Languages (HOLs) is
an improvement over assembly language methods; however, there
i are still many problems associated with OFP development. One

of the most significant problems is lack of availability of

E the Flight Computer. A solution would be to have OFP valida-
E tion completed prior to Hot Bench Computer (HBC) testing.

} Checkout could be made by three different methods. The first
E method is to perform module~type checkout where a given set

i of inputs to a module result in predetermined outputs. This
% type of checkout is very minimal and while providing for the
‘ correctness of a given module, it does not verify the system
interaction. The second type of checkout is performed using
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a complete system which includes both an OFP and simulation
modules. This type of checkout is performed non-real time

and will provide for the checkout of the complete OFP as a
system (with all inputs from the simulated real world and out-
puts to simulated sensors). This will verify correctness

of those items subject to mathematical analysis. The third
method of OFP checkout is an extension of the second method
where a Head Up Display (HUD) is implemented and dynamic inputs
from a cockpit are used. This is the final type of system
checkout before the HBC is used. This is required in order

to assure correctness with respect to visual human factors
(e.g., Bomb fall line).

Each of these three methods of OFP checkout were used for
the DAIS Mission Software. The module type is used as a pre-
liminary test to discover any blatant errors. After the
modules are individually exercised, they are integrated and
the second method is used. Figure 20 indicates the structure
of the second and third method of OFP checkout, and integration
with the models. The second method does not require the use of
the Evans-Sutherland display system or the cockpit. Instead the
cockpit inputs are performed via keyboard input to the DECsystem-~
10. However, it should be noted that the OFP inputs from the
models are identical to those that would arrive from the URT when
the OFP is resident in the HBC. This second method assures complete
model and OFP checkout at the systems level. The current simu-
lation method uses the TOMBS simulation facility, the AVSIM
Model Executive, and the DECsystem-10 DDT facility. Data may
be logged from both the models and the OFP for post run analysis.
The third method of checkout allows the programmer to evaluate
the dynamic system interaction of the OFP and the models. The
programmer may view the Evans-Sutherland and verify that the
dynamic displays and logic are performing as desired. Data
may again be logged from the OFP and models for post run
analysis. Thus, for example, Miss and Release calculations
can be evaluated later from their logged values. The current
simulation implementation has a freeze button that will halt
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the models and OFP in order to allow the DDT facility to view
all the Compools in the OFP and all Common blocks in the
models. :

As shown in Figure 20, the third method makes use of
the cockpit and the Evans-Sutherland system. Once method
three has been completed, the OFP is cross-compiled for the

HBCs and the final phase' of verification is performed.

A further capability to this system is that the input
data to the OFP can be logged on tape, and then later it can
be used as input to the URT when the OFP is resident in the
STS or ITB. A direct comparison of the HBC's output against
the previous DECsystem-10 output will verify accuracy and
validity of the HBC resident OFP.

These techniques not only allow the programmer to progress
through higher levels of testing in a sequence of logical
steps, but they also provide a means of assuring that the
models and the OFP perform together in a prescribed manner.
When the OFP is transferred to the HBC very minimal control
is allowed and very minimal I/0 is available for the evaluation

of the model and OFP interactions.
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5.2.3 SIMULATION TOOLS

Simply stated, the object of software testing is to assist
in the development, assure the correctness, and measure the
performance of the software system to be delivered. As the l
complexity of a system grows, so does the need for a well-
designed method of proving that the system works.

Just as module-based block-structured programming aids
the coding of large systems by reducing the conceptual com-
plexity to smaller, more manageable problems, a module-based
approach to software testing provides a systematic solution
to the difficult problem of proving system correctness. The
tests should be designed so as to minimize the number of poten-
tial sources of error at any one testing step, thus eliminating
confusion when discrepancies do appear.

Applying this reasoning to the DAIS system, a four phase
testing process suggests its2lf., The first two phases apply
to individual program mcdules.

Initially, a module is tested in a static environment,
verifying the response of the module's algorithms to inputs.

Once this test is passed, the module may be subjected to
dynamic tests, verifying its performance within the structure
provided by the local executive (application software) or
other executive routines (executive software).

Intermetrics provided several tools to aid in this pre-
liminary testing. The Level @ tester (LPGEN) sets up static
tests and generates test reports. The display system requires
its own specialized Level @ Tester (IMFKT). The TOMBS faci-
lity provides a local executive environment for dynamic module-
based testing. These tools are described below in more detail.

Once the modules are individually verified, integration
with the AVSIM simulation may occur, executing both the DAIS
system and the real time environmental simulation on the
DECsystem-10. This provides all the services of the DECsystem-10
debugging tools rendering visibility to any problems arising

from this integration step.
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Finally, the tested DAIS system must be moved to the
ITB. Any problems occurring there may be attributed to the
pecularities of the ITB with confidence that the algorithms
and control structures of DAIS and the DAIS communication with
the real time simulation -re valid.

The testing methodology espoused above therefore consists
of the following sequence:

Level @#: Individual Module static test

Level 1: Individual Module dynamic test with local
executive

Level 2: Integrated DAIS System with Simulator on
DECsystem-10

Level 2A: Full-up System execution on HBC
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5.2.3.1 General Level @ Testing

The DAIS Software Standards enforced the differentiation
between input, output, and update variables. Thus, it was
possible to build a tool which automatically generates a
Level f§ test driver for the DAIS Mission Software Tasks
and COMSUBS.

LAZGEN is an automated facility for performing Level §
tests of individual applications software tasks. It uses the
source file of an applications task to automatically write
a set of test programs and input files for a Level # test.
These files are automatically compiled and linked to run
under TOMBS.

The user then executes this load file. The test program
is run interactively on a computer terminal. The user is
requested by the test program to enter a value for each input
variable and event of the task. These values are output to
the task, the task itself is executed, and all output values
of tﬁe task are printed on the user's terminal. The output
includes values for all output variables, events, and a list
of any tasks that have been scheduled by the task being tested.
The user may continue runn}ng the test as many times as desired.
In subsequent runs, he may reset each input variable or leave

it set to the value at the end of the preceding run.

While the user is inputing variable values and the test
program in outputing values through the terminal, a separate
report file is kept documenting the user's inputs and the
test programs' outputs in printable form. Thus the Level §
tester allows the user to start with the source file of a
task and generate a test report in a minimal amount of time.
The only entries he must make are the task name and the input
variable values when asked for.
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5.2.3.2 Level @ Testing of Display Software

IMFKT is similar in concept to LFGEN but has been speci-
alized for testing the OFP Display Software. This tool will
print out the sequence of display messages in visual form
retaining the actual final display image in addition to the
above mentioned Level §# functions. A report file is also
generated logging all terminal interactions in a printable
form.

5.2.3.3 Level 1 and Level 2 Testing

TOMBS (Tony's Operational Module-Based Simulator) is a
similation facility executing on the DECsystem-10. TOMBS is
similar to an SLS (Statement Level Simulator) in that it
executes host computer instructions while emulating target
computer (e.g., AN/AYK-15 Processor) programs.

This facility was the primary tool used in conjunction
with AFAL's AVSIM for the initial development and testing of
the navigation and weapon delivery software for the DAIS
Mission Software effort. Upon successful testing in the DEC-
system-10, the transfer to the AN/AYK-15s by recompilation has
proven to be a simple and straightforward process, with the
major source of error being with respect to interface discrep-
ancies.

5.2.3.3.1 TOMBS

TOMBS is a module-based simulator that will allow real
time interaction to occur at the end of each module and/or at
the occurrence of the HOL's real time statements (i.e., execu-
tive interfaces). Therefore, TOMBS presents a simulation faci-
lity that is capable of accurate Real Time Interaction with at
least the fidelity and granularity of the module (task) level.
Its throughput capability will exceed that of an SLS.
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The implementation of TOMBS drives the system with respect
to minox cycle interrunts. TOMBS does not make any assump-
tions with respect to the timing, or the accumulation of
time, by the executing program. New minor cycles are gener-
ated by TOMBS when all Application Tasks are in WAITING or
INACTIVE states. Thus, TOMBS simulates a situation in which
the flight computer is considered to be infinitely fast.

All tasks run to completion in a finite amount of time, and
in particular, in a Minor Cycle.

From the point of view of TOMBS, an Applications Task can
be suspended only at Real Time statements. From the point of
view of the Applications Software, TOMBS is supporting a
time granularity of a Minor Cycle. Note, however, that this
is the finest time granularity allowed and supported for Task
interactions in the DAIS Mission Software System., Only the
time critical output statement TRIGGER allows for a finer
(relative) time granularity in the DAIS Mission Software
System. But the execution of the TRIGGER statement itself
cannot be finer than a minor cycle.

The DAIS Applications Software is to be designed and
built as if it were to reside in a single processor. The fact
that DAIS is a Federated computer system and regquires soft-
ware partitioning should be invisible to the Applications
Software. Indeed, a major design emphasis with respect to
the DAIS Executive and Software Standards is precisely that
development methodology.

TOMBS does not in itself implement a specific set of sim-
ulation control facilities. What it does, however, is to
allow the use of the JOVIAL debug and I/0 capabilities. In
addition, TOMBS presents a framework in which the user may
write his own control and environmental program which are
then easily associated with the Applications Software to
be tested.
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5.2.3.3.2 TOMBS and AVSIM

AVSIM consists of a set of avionics models and a structure
for controlling them. This facility is the baseline in use
at AFAL for A-7, A-10, and F-16 simulations. AVSIM is used
in conjunction with the DAIS STS and ITB facilities.

TOMBS has been directly interfaced with AVSIM in order to
allow a total simulation environment for the execution of
mission software. This interfacing presents the same models
and timing interactions as found when executing on the actual

processors in the STS or ITB environment.
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SECTION VI.
MISSION SOFTWARE ILLUSTRATIONS

During the three and a half year duration of the DAIS
Mission Software program, the mission software and the DAIS
program itself continued to evolve and assume new capabili-
ties and directions. Part of this evolution arose in response
to other Air Force programs. The changes to the DAIS Mission
Software as a result of this evolution illustrates the capa-
bility of the basic design and methodology to quickly respond
to dynamic revisions to requirements.

This section will discuss some of these developments and
the ability of the DAIS Mission Software to respond.

6.1 Mission A to Mission a

With the evolution of the DAIS program, the baseline
A-7 aircraft mission was redesignated to be an A-10 mission,
In addition, the actual equipment suite was modified with
respect to both sensors and the inertial system. This, of
course, had a corresponding effect upon the control and
display requirements.

In Section 4.5 of this report, the structuring of the
Application Software was discussed. When the change was made
from the A-7 based Mission A to the A-10 based Mission a,
the baseline OFP had to be modified. The structural nature
of the Application Software in each of its functional areas:
control programs; navigation, guidance and control; weapon
delivery; stores management; pilot interface; and equipment
interfaces; allowed for rapid and reliable modification to
the new mission and its requirements.

An example of the modifications required can be seen in
the navigation, guidance, and control functions. Navigation
was structured initially on DAIS for Mission A to include
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all the functions necessary for maintenance of an inertial
platform. This included processing accelerometer outputs
supplying gyro torquing, and performing ground alignments.

wWith the purpose of providing a system which would con-
tain all the capabilities of the existing A-7 OFP, Navigation
was able to use observables from the Doppler radar to achieve
in-flight alignment, baro-altimeter data for veritcal channel
damping, and contained fault-down logic if one or more of the
sensors failed. The original navigation function also provided
air-data and winds computation as well as position updates
and aircraft attitude processing.

When DAIS was re-directed to use the SKN-2416 Inertial
Navigation System for Mission a, much of the navigation was
rendered unnecessary, as the INS did internal accelerometer,
gyro, and alignment maintenance., The necessary software modi-
fications were very minimal, however. Due to the block-struc-
ture of the navigation function, the unnecessary portions of
the OFP were simply removed, leaving the functions of position, L
air-data, winds, and attitude processing virtually unchanged.
The simplicity with which the modification was made is indica-
tive of the value of the layered modular software approach.

The Guidance function had been structured in a similar
fashion. Modules for different modes of horizontal and ver-
tical guidance were made with no significant modifications
to the algorithmic content of existing software. Changes
occurred only in the controlling and moding logic of the
Steering controller.

6.2 Non-DAIS Device Protocol

Early in the DAIS program, AFAL decided to interface
its system to the ADTC Stores Logic Units (SLU) for the Stores
Management System. The SLU interface design, however, did ]
not follow the DAIS MIL-STD 1553A protocol in detail. Initi- H
ally, this was treated as a special condition in the I/0
handling.
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Associated with the modification of the mission for DAIS,
was the introduction of the SKN-2416 inertial system. While
this system is used on the F-16 and interfaces with a MIL-STD
1553 type protocol, it does not use the DAIS protocol in
detail. The Single Seat Attack (SSA) program at the time was
also based upon an A-10 and had selected a SKN-2416 inertial
unit for its system. The SSA program also chose to use the
DAIS Executive system and methodology for its Mission Software

development.

In addition to not following the DAIS MUX protocol, the
SKN~2416 required the ability for the application software
to read the device whenever it wanted. Previously, I/0 was
either read to the Application Software in an Asynchronous
periodic manner, or asynchronously when the device indicated
it needed to be read. As a result of the above requirement,
the DAIS Software System was extended to be able to handle
(1) Non-standard Avionics (i.e., different protocols), and
(2) Application Software Asynchronous device reads.

Non-Standard devices, in the context of DAIS, are those
devices capable of communication over a MIL-STD 1553A bus but
which do not conform exactly to the DAIS Remote Terminal (RT)
communications protocol. Since the DAIS Bus Control Executive
was designed to communicate with DAIS compatible Remote Terminals
only, modifications were required to support such non-standard
devices. Three components of DAIS Executive Software were
affected by the required modification: PALEFAC, the Local
Executive, and the Bus Control Master Executive.

The capability of an applications task to asynchronously
read data from a terminal connected to the bus departs from
the baseline DAIS system philosophy in that terminals connected
to the bus may only asynchronously transmit when they wish to,
never on demand. When an applications task reads a data block, it
only accesses the last updated version of the data from the pro-
cessor's memory, and in no way forces a transmission from the
related device.
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Since the new capability differed radically from the
previous concept of READ, a new real-time linguistic primi-
tive to perform the operation was invented, entitled FORCE'READ.
This primitive would make a special request to the
bus control to update the Compool block argument by forcing
a transmission from its associated terminal. The Local
Executive would then place the issuing task into a wait state
until the Compocl block was updated. This time suspension was
required due to the time lag involved in bus transmissions.
This augmentation to the real-time Applications/Executive
interface required modifications to PALEFAC for the recogni-
tion of the new primitive. Appropriately revised table con-
structions and corresponding local Executive interface routines
were created as a result of the modification.

6.3 Throughput Optimization

The rigidity of the Higher Order Software (HOS) principles
insures that real-time data conflicts can not exist. The imple-
mentation of these principles requires double buffering of
data to achieve this condition. Global information is read
into a local copy, which is manipulated, and finally the local
copy may be written back to the global copy. The reading or
writing of these copies occur as a complete function that can-
not be interrupted by other data moves. (Although hardware
interrupts can occur, data interface is not allowed.) While
this method of preventing data conflicts works, it obviously
entails a high execution time penalty.

Oone of the first modifications to HOS principles was the
introduction of a GLOBAL'COPY data declaration along with the
associated ACCESS and BROADCAST real-time statements. These
three primitives correspond to the LOCAL'COPY declaration and
the READ and WRITE statements. However, with the GLOBAL'COPY
mechanism, access to the actual global data is allowed without
the double buffering. In order to ensure that reliability is
maintained, these global primitives may only occur in the
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highest priority processes, and thus non-interruptable tasks,
that is, these new declarations and statements, may only occur

in PRIVILEGED'MODE'TASKS which are short and non-interruptible
tasks.

While these restrictions prevent data conflicts, the
majority of tasks still use the LOCAL'COPY, READ and WRITE
primitives. It is possible, however, to analyze and under-
stand possible data conflicts and to ensure that
data blocks cannot have such conflicts. Therefore, a new
construct, the LOCAL'COPY'OVERRIDE directive, was introduced
as an effeciency capability to be used only with care. The
use of this directive, effectively modifies the code to behave
in the same manner as the new global primitives while still
being written as LOCAL'COPY, READ and WRITE. It was used both
by the SSA program and by the DAIS Weapon Delivery Software
in its two processor demonstration. Wwhen used in a careful
and knowing fashion, the directive can be of assistance. But
it also assumes an a priori guaranteed data conflict preven-
tion mechanism and cannot be used indisciminately.

6.4 Proof of Concept

The DAIS Mission Software was developed and tested pri-
marily on the host computer, the DECsystem-10. Only after
the Mission Software was developed, simulations completed, and
integrity assumed was the Mission Software placed on the flight
processors, the AN/AYK-15s. The initial Mission A Application
Software and Local Executive were developed in their entirety
on the DECsystem~10 before the physical AN/AYK-15s arrived
at AFAL. While the framework of the Master Executive's bus
control existed, it required testing of the AN/AYK-15 hardware
interfaces to assure proper functioning. The not unusual situ-
ation of limited target computer access, few support tools,
and continued system hardware integration prevented the full
use of the DAIS STS and ITB during this effort.

133




Throughout the DAIS Mission Software efforts approximately
75% of the debugging and testing of the Local and Master
Executives was accomplished on the DECsystem-10, with only
the final processor and I/0 interfaces, and virtual timing being
of necessity performed o~ the actual AN/AYK-1lS5 system. When
the full weapon delivery capability of Mission a was developed,
the effort was done on the DECsystem-10 using the old AFAL

F-111 cockpit and displays. Not only were the logical and
algorithmic capabilities debugged and tested, but the necessary
visual weapon delivery human factors were verified before
moving to the AN/AYK-15 processors and DAIS cockpit. The
moving of this software and its integration into the target
processor environment was accomplished in less than two days.
This included recompilation of the programs, relinking, parti-
tioning, and integration into the STS.

One of the most dramatic demonstrations of the DAIS
Mission Software capability was the repartitioning of Mission a
from a two processor demonstration into a three processor par-
titioned demonstration. This was accomplished in two hours.
The philosophy and methodology of the development of the
i Applications Software with the basic design of the Executive
| System, allowed this base for simplified software integration.

. 6.5 Use of J73/1

e

One of the objectives of the DAIS Mission Software effort
was to use the Higher Order Language J73/I for the avionics
software. The Application Software was successfully written
using J73/1 as controlled by the DAIS Software Standards. It
was expected that 100% of the Application Software could be
written in J73/1I and this was accomplished. Certain data
packing and unpacking routines could have been written in a
. more efficient manner in assembly code. Part of the reason
E for this was the fact that J73/1 (as implemented on the AN/

' AYK-15 flight processor) only supported 16 bit integers rather

than the 32 bit integers available on the processor hardware.

Thus certain of the data manipulation became cumbersome in J73/I.
134

S T TR T e e e TR T et

STV PRSI R LF Lot RV SR O NSRS S



The DAIS Local Executive is responsible for interfacing
with the Application Programmer. As such it provides not only
process control, but also presents the interface for data
handling and the I/0 control. The Local Executive could ke
thought of as a set of services that modify the process state
database by Application Software request.

The DAIS Local Executive was written 95% in J73/I with
only three functions being coded in assembly code. These
three functions are:

e The actual I/O instruction.
e The Interrupt Interface.
o The process swapping.

In each of these three cases, the feature to be executed is
not conceptually supported by J73/I or other common HOLs, but
are dependent upon hardware idiosyncrasies.

The DAIS Master Executive is concerned with Minor Cycle
synchronization, message processing, and bus failure control.
The messages may be either synchronous, asynchronous, or
critically-timed, i.e., messages for the special TRIGGER
statement. Over 90% of the Master Executive was written in
J73/I. As was the case with the local executive, assembly
code was logically required for the hardware and I/0 interfaces.

The J73/1 compiler implementation used in DAIS was not
highly optimized, but the Mission Software functions implemented
mapped well into the J73/I language. Thus the efficiency of
code generation becomes a question of the J73/1I language mapping
into a particular instruction set.

6.6 Embedded Performance Monitor

An embedded performance monitor (EPM) was implemented
as an optional feature of the DAIS Executive. The motivations
for such a tool were several. A requirement existed for a
performance monitor embedded within the Executive itself.

These requirements included:




e Software to provide constant monitoring without
specific manual intervention.

e Software tailored to produce the desired results

directly instead of trying to cull the information
from massive post-run dump files.

e The Software that can perform this function in the
absence of sophisticated debugging facilities, such
as at field sites or even during flight.

¢ Performance parameters that would supply a uniform
terminology for evaluating performance and as such
fit in with the standardization effort promoted
by DAIS.

While being directly embedded in the DAIS Executive, the-
Embedded Performance Monitor (EPM) is an optional element
selected by conditional compilation features. Within the EPM
in turn, various options are available to control the extent
1 of monitoring to be performed. The option consists of three
levels of information. These are:

1. Global Information - Measurements included in this area
‘ include total Executive, Applications, and Idle execution

f time.
2. Functional Area Information -

! H a. Interrupt processing time, number of interrupts.
b. Bus control time.
Bus throughput data:

i. number of messages

ii. estimated DMA conflict percentage
d. Task control time (count of real-time operations).
e. Timer control time (minor cycle setup, critically

timed messages).
f. Application task execution time.
g. Other specific functional areas as desired.
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3. Module Information - Measures timing for each module

desired.

The above statistics can be measured and averaged over
any duration. They supply data for the purposes of evaluating
benchmarks or actual OFP performance. The overhead introduced
by performance monitoring itself can be cancelled by halting
the clock during performance processing. When real-time use
is required, clock stopping cannot occur, but time spent in
performance monitoring can be tallied separately from all
other categories.
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SECTION VII.
*  CONCLUSION AND RECOMMENDATIONS

The DAIS Mission Software was successfully developed and it
demonstrated and proved that the use of modern software tech-
niques and reliability concepts are effective in the rigorous
environment of avionics. The capabilities of J73/I as a
real-time programming language has been demonstrated and
upward compatible real-time linguistic constructs for use
with J73/1 have been identified. The use of modern techniques
has allowed the development of easily partitionable mission
software. Indeed the Mission Software was developed as a
single virtual system and then partitioned as desired.
Finally, the real-time interface allowed the efficient and

cost-effective use of simulation techniques.

RECOMMENDATIONS

The achievement of the DAIS Mission Software has opened
avenues for further development and refinement. The follow-
ing cunstitutes a list of items requiring further development

or refinement and several recomnendations:

e One of the major drawbacks in the software community
acceptance of the DAIS Executive is the guestion
of time and space efficiency. In order to be accepted
by a broad based community, it is necessary to maintain
the efficiency of the DAIS system without interfering
with the inherent reliability of its development
approach and without increasing the complexity of its
interface from the Applicationé Software point of view.
In particular, an improved implementation of data blocks
{READ/WRITE) must be addressed. The proper method of
optimization would be the use of PALEFAC for the anal-
ysis of conflict situations. This area represents a

new stage of technology.
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e The ground work and preliminary design for a concept
of Monitor Recovery has been laid. These efforts
should be implemented and demonstrated. It is
important to maintain the philosophy of creating
a framework in which missions are easily developed and

OFPs are modifiable in a cost effective manner.

e Improvements to the current Mission Software Build
process are reguired. In particular, the relation-
ship between PALEFAC, the PALEFAC Pre-processor, and
the Application modules and Compools need to be
improved by automating the necessary creation and

transitioning of information.

e PALEFAC provides a central repository of information.
While it has always been intended for PALEFAC to
analyze this information for diagnostics, statistics
and enforcement of coding standards, this has as of
yet been done only to a small degree. This should
be pursued in order to fully develop the tool and
in order to provide useful statistics for future

Air Force efforts.

Perhaps the one area that has not yet been fully appre-
ciated in the DAIS program is the generality of the DAIS

software system.

Current avionics systems such as the F-16 or F-18 are
actually federated computer systems with many large and small
computers. While the F-16 is advertised as having one Fire
Control Computer, it also contains processors in its radar,

HUD, and other subsystems.

Once DAIS has been retargeted to systems other than the
AN/AYK-15, it will be possible to accommodate mixed systems
of processors within the DAIS federated scheme. To ensure a
reasonable and desirable goal the required interfaces must
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match. Since J73/I is the linguistic expression of DAIS on
a high level, it only becomes necessary to ensure compatibility
on the low level. This implies:

Use of the same (compatible) data bus and protocol

Identical organization and structure of Interprocessor
messages

e Invariant floating point format between processors
(e.g., 48-bit representation: 16 bit exponent and
32 bit mantissa in 2's complement notation.)

By requiring this compatibility for all versions of the
Executive/PALEFAC it will become possible to execute the same
PALEFAC input with the same set of Applications Software on
each version of PALEFAC to obtain compatible load modules
for differing processors.

In the same vein even small processors (8080s, 6800s)
for which J73/1 code generators exist, can be centrally developed
and then partitioned out by PALEFAC. In this case, the target
processors would not have a full executive capability. But
the advantages of a central development and control would be
realized. This concept is important in the context of the
emerging and growing use of microprocessors in avionic systems
and the associated development of distributive processing.
Thus the distinction between central processors and remote
subsystems would cease to be one of software versus hardware

functions.

The applicability of the DAIS Software system to mixed
processors of varying types and sizes should be demonstrated
in the context of central software development and/or control.
The current DAIS Software system forms a baseline that is
easily extended in this direction.

With the DAIS Mission Software, it is possible to transi-
tion more than techniques and methodology. It is possible
also to transition the support tools and the avionics executive.
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Because of this capability, it becomes extremely critical

for the Executive to be designed, implemented, and verified
in such a fashion as to both claim and receive user accep-
tance. Major life cycle cost savings are realizable by stan-
dardizing the Executive/Application Software interface. 1If
this interface (the real-time constructs) are standardized,
then it is relatively straightforward to build or retarget

a DAIS executive for various avionics computers or I/0
structures.

If the Real-Time interface were to be accepted by the
Air Force as a standard it would no longer be possible to
continue major developments or modifications. 1t is imper-
ative that all major outstanding issues be resolved in a
timely fashion while maintaining system reliability and

integrity.
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